Grup de Caracterització de Materials, Departament de Física i Enginyeria Nuclear, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona 08028, Catalonia, Spain.
J Chem Phys. 2011 Jan 14;134(2):024512. doi: 10.1063/1.3514589.
For decades the Vogel-Fulcher-Tammann equation has dominated the description of dynamics of the non-Arrhenius behavior in glass forming systems. Recently, this dominance has been questioned. Hecksher et al. [Nat. Phys. 4, 737 (2008)], Elmatad et al. [J. Phys. Chem. B 113, 5563 (2009)], and Mauro et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)] indicated superiority of several equations showing no divergence at a finite (nonzero) temperature. This paper shows distortion-sensitive and derivative based empirical analysis of the validity of leading equations for portraying the previtreous evolution of primary relaxation time.
几十年来,Vogel-Fulcher-Tammann 方程一直主导着非 Arrhenius 行为在玻璃形成体系动力学中的描述。最近,这种主导地位受到了质疑。Hecksher 等人[Nat. Phys. 4, 737 (2008)]、Elmatad 等人[J. Phys. Chem. B 113, 5563 (2009)]和 Mauro 等人[Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)]指出了一些没有在有限(非零)温度下发散的方程的优越性。本文展示了对主要方程进行扭曲敏感和导数基础的经验分析,以描绘初级弛豫时间的玻璃前演化。