Suppr超能文献

颈动脉超声中症状性与无症状性斑块的分类。

Symptomatic vs. asymptomatic plaque classification in carotid ultrasound.

机构信息

Department of ECE, Ngee Ann Polytechnic, Singapore.

出版信息

J Med Syst. 2012 Jun;36(3):1861-71. doi: 10.1007/s10916-010-9645-2. Epub 2011 Jan 18.

Abstract

Quantitative characterization of carotid atherosclerosis and classification into symptomatic or asymptomatic type is crucial in both diagnosis and treatment planning. This paper describes a computer-aided diagnosis (CAD) system which analyzes ultrasound images and classifies them into symptomatic and asymptomatic based on the textural features. The proposed CAD system consists of three modules. The first module is preprocessing, which conditions the images for the subsequent feature extraction. The feature extraction stage uses image texture analysis to calculate Standard deviation, Entropy, Symmetry, and Run Percentage. Finally, classification is performed using AdaBoost and Support Vector Machine for automated decision making. For Adaboost, we compared the performance of five distinct configurations (Least Squares, Maximum- Likelihood, Normal Density Discriminant Function, Pocket, and Stumps) of this algorithm. For Support Vector Machine, we compared the performance using five different configurations (linear kernel, polynomial kernel configurations of different orders and radial basis function kernels). SVM with radial basis function kernel for support vector machine presented the best classification result: classification accuracy of 82.4%, sensitivity of 82.9%, and specificity of 82.1%. We feel that texture features coupled with the Support Vector Machine classifier can be used to identify the plaque tissue type. An Integrated Index, called symptomatic asymptomatic carotid index (SACI), is proposed using texture features to discriminate symptomatic and asymptomatic carotid ultrasound images using just one index or number. We hope this SACI can be used as an adjunct tool by the vascular surgeons for daily screening.

摘要

定量描述颈动脉粥样硬化,并将其分类为症状性或无症状性,这在诊断和治疗计划中至关重要。本文描述了一种计算机辅助诊断(CAD)系统,该系统分析超声图像,并根据纹理特征将其分类为症状性和无症状性。所提出的 CAD 系统由三个模块组成。第一个模块是预处理,它对图像进行预处理,以便进行后续的特征提取。特征提取阶段使用图像纹理分析来计算标准差、熵、对称性和运行百分比。最后,使用 AdaBoost 和支持向量机进行分类,以实现自动化决策。对于 AdaBoost,我们比较了该算法的五种不同配置(最小二乘法、最大似然法、正态密度判别函数、口袋和树桩)的性能。对于支持向量机,我们比较了使用五种不同配置(线性核、不同阶多项式核和径向基核)的性能。支持向量机的径向基核呈现出最佳的分类结果:分类准确率为 82.4%,灵敏度为 82.9%,特异性为 82.1%。我们认为纹理特征与支持向量机分类器相结合可以用于识别斑块组织类型。我们提出了一种名为症状性无症状性颈动脉指数(SACI)的综合指数,该指数使用纹理特征来区分症状性和无症状性颈动脉超声图像,仅使用一个指数或数字。我们希望这个 SACI 可以作为血管外科医生日常筛查的辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验