Suppr超能文献

揭示单晶多孔硅纳米线的形成途径。

Unveiling the formation pathway of single crystalline porous silicon nanowires.

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.

出版信息

ACS Appl Mater Interfaces. 2011 Feb;3(2):261-70. doi: 10.1021/am1009056. Epub 2011 Jan 18.

Abstract

Porous silicon nanowire is emerging as an interesting material system due to its unique combination of structural, chemical, electronic, and optical properties. To fully understand their formation mechanism is of great importance for controlling the fundamental physical properties and enabling potential applications. Here we present a systematic study to elucidate the mechanism responsible for the formation of porous silicon nanowires in a two-step silver-assisted electroless chemical etching method. It is shown that silicon nanowire arrays with various porosities can be prepared by varying multiple experimental parameters such as the resistivity of the starting silicon wafer, the concentration of oxidant (H(2)O(2)) and the amount of silver catalyst. Our study shows a consistent trend that the porosity increases with the increasing wafer conductivity (dopant concentration) and oxidant (H(2)O(2)) concentration. We further demonstrate that silver ions, formed by the oxidation of silver, can diffuse upwards and renucleate on the sidewalls of nanowires to initiate new etching pathways to produce a porous structure. The elucidation of this fundamental formation mechanism opens a rational pathway to the production of wafer-scale single crystalline porous silicon nanowires with tunable surface areas ranging from 370 to 30 m(2) g(-1) and can enable exciting opportunities in catalysis, energy harvesting, conversion, storage, as well as biomedical imaging and therapy.

摘要

由于其独特的结构、化学、电子和光学特性的组合,多孔硅纳米线作为一种新兴的材料系统引起了人们的关注。充分了解其形成机制对于控制基本物理性质和实现潜在应用具有重要意义。在这里,我们进行了一项系统的研究,阐明了两步银辅助无电化学蚀刻法中形成多孔硅纳米线的机制。结果表明,通过改变起始硅片的电阻率、氧化剂(H2O2)的浓度和银催化剂的量等多个实验参数,可以制备具有不同孔隙率的硅纳米线阵列。我们的研究表明,随着晶圆电导率(掺杂浓度)和氧化剂(H2O2)浓度的增加,孔隙率呈增加趋势。我们进一步证明,由银氧化形成的银离子可以向上扩散,并在纳米线的侧壁上重新成核,从而产生新的刻蚀途径,形成多孔结构。这一基本形成机制的阐明为制备具有可调节表面积(370 至 30 m2 g-1)的晶圆级单晶多孔硅纳米线提供了合理的途径,并为催化、能量收集、转换、存储以及生物医学成像和治疗等领域带来了令人兴奋的机会。

相似文献

1
Unveiling the formation pathway of single crystalline porous silicon nanowires.
ACS Appl Mater Interfaces. 2011 Feb;3(2):261-70. doi: 10.1021/am1009056. Epub 2011 Jan 18.
2
Electrically conductive and optically active porous silicon nanowires.
Nano Lett. 2009 Dec;9(12):4539-43. doi: 10.1021/nl903030h.
3
Porous silicon nanowires.
Nanoscale. 2011 Oct 5;3(10):4060-8. doi: 10.1039/c1nr10668f. Epub 2011 Aug 25.
6
Top-down fabricated silicon-nanowire-based field-effect transistor device on a (111) silicon wafer.
Small. 2013 Feb 25;9(4):525-30. doi: 10.1002/smll.201201599. Epub 2012 Nov 12.
7
Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays.
Nanoscale Res Lett. 2010 Aug 5;5(11):1822-1828. doi: 10.1007/s11671-010-9719-6.
8
Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer.
Nano Lett. 2013 Sep 11;13(9):4362-8. doi: 10.1021/nl4021705. Epub 2013 Aug 13.
9
Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
ACS Appl Mater Interfaces. 2010 Dec;2(12):3709-13. doi: 10.1021/am100857h. Epub 2010 Nov 29.

引用本文的文献

1
Doping density, not valency, influences catalytic metal-assisted plasma etching of silicon.
Mater Horiz. 2023 Aug 29;10(9):3393-3403. doi: 10.1039/d3mh00649b.
2
Self-formed silver nanoparticles on freestanding silicon nanowire arrays featuring SERS performances.
RSC Adv. 2019 Aug 20;9(45):26037-26042. doi: 10.1039/c9ra03273h. eCollection 2019 Aug 19.
3
A silicon-based quantum dot random laser.
RSC Adv. 2019 Sep 11;9(49):28642-28647. doi: 10.1039/c9ra04650j. eCollection 2019 Sep 9.
5
Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review.
Nanomaterials (Basel). 2021 Feb 3;11(2):383. doi: 10.3390/nano11020383.
8
Maskless Spatioselective Functionalization of Silicon Nanowires.
ChemNanoMat. 2018 Aug;4(8):874-881. doi: 10.1002/cnma.201800072. Epub 2018 May 29.
10
Unraveling the Morphological Evolution and Etching Kinetics of Porous Silicon Nanowires During Metal-Assisted Chemical Etching.
Nanoscale Res Lett. 2017 Dec;12(1):385. doi: 10.1186/s11671-017-2156-z. Epub 2017 Jun 2.

本文引用的文献

1
Photocatalytic Properties of Porous Silicon Nanowires.
J Mater Chem. 2010;20(18):3590-3594. doi: 10.1039/c0jm00493f.
2
Biodegradable porous silicon barcode nanowires with defined geometry.
Adv Funct Mater. 2010 Jul 23;20(14):2231-2239. doi: 10.1002/adfm.201000360.
3
Semiconductor nanowire: what's next?
Nano Lett. 2010 May 12;10(5):1529-36. doi: 10.1021/nl100665r.
4
Solution-grown silicon nanowires for lithium-ion battery anodes.
ACS Nano. 2010 Mar 23;4(3):1443-50. doi: 10.1021/nn901409q.
5
Light trapping in silicon nanowire solar cells.
Nano Lett. 2010 Mar 10;10(3):1082-7. doi: 10.1021/nl100161z.
6
Single crystalline mesoporous silicon nanowires.
Nano Lett. 2009 Oct;9(10):3550-4. doi: 10.1021/nl9017594.
7
Semiconductor nanowires for energy conversion.
Chem Rev. 2010 Jan;110(1):527-46. doi: 10.1021/cr900075v.
8
Electrically conductive and optically active porous silicon nanowires.
Nano Lett. 2009 Dec;9(12):4539-43. doi: 10.1021/nl903030h.
10
Biodegradable luminescent porous silicon nanoparticles for in vivo applications.
Nat Mater. 2009 Apr;8(4):331-6. doi: 10.1038/nmat2398. Epub 2009 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验