Suppr超能文献

从空间边界中分离场景内容:在表示真实世界场景方面,旁海马体位置区域和外侧枕叶复合体的互补作用。

Disentangling scene content from spatial boundary: complementary roles for the parahippocampal place area and lateral occipital complex in representing real-world scenes.

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

J Neurosci. 2011 Jan 26;31(4):1333-40. doi: 10.1523/JNEUROSCI.3885-10.2011.

Abstract

Behavioral and computational studies suggest that visual scene analysis rapidly produces a rich description of both the objects and the spatial layout of surfaces in a scene. However, there is still a large gap in our understanding of how the human brain accomplishes these diverse functions of scene understanding. Here we probe the nature of real-world scene representations using multivoxel functional magnetic resonance imaging pattern analysis. We show that natural scenes are analyzed in a distributed and complementary manner by the parahippocampal place area (PPA) and the lateral occipital complex (LOC) in particular, as well as other regions in the ventral stream. Specifically, we study the classification performance of different scene-selective regions using images that vary in spatial boundary and naturalness content. We discover that, whereas both the PPA and LOC can accurately classify scenes, they make different errors: the PPA more often confuses scenes that have the same spatial boundaries, whereas the LOC more often confuses scenes that have the same content. By demonstrating that visual scene analysis recruits distinct and complementary high-level representations, our results testify to distinct neural pathways for representing the spatial boundaries and content of a visual scene.

摘要

行为和计算研究表明,视觉场景分析能快速生成对场景中物体和表面空间布局的丰富描述。然而,我们对于人类大脑如何完成这些不同的场景理解功能,仍然知之甚少。在这里,我们使用多体素功能磁共振成像模式分析来探究真实场景的表现本质。我们表明,内嗅区皮层的旁海马区(PPA)和外侧枕叶复合体(LOC),以及腹侧流中的其他区域,以分布式且互补的方式分析自然场景。具体来说,我们使用空间边界和自然度内容不同的图像来研究不同场景选择区域的分类性能。我们发现,PPA 和 LOC 都可以准确地对场景进行分类,但它们会产生不同的错误:PPA 更常混淆具有相同空间边界的场景,而 LOC 更常混淆具有相同内容的场景。通过证明视觉场景分析需要独特且互补的高级表示,我们的结果证明了用于表示视觉场景的空间边界和内容的不同神经通路。

相似文献

3
The occipital place area represents the local elements of scenes.枕叶位置区域代表场景的局部元素。
Neuroimage. 2016 May 15;132:417-424. doi: 10.1016/j.neuroimage.2016.02.062. Epub 2016 Feb 27.
6
Concavity as a diagnostic feature of visual scenes.凹度作为视觉场景的诊断特征。
Neuroimage. 2021 May 15;232:117920. doi: 10.1016/j.neuroimage.2021.117920. Epub 2021 Feb 27.
7
Dissociable Neural Systems for Recognizing Places and Navigating through Them.识别地点和在其中导航的分离神经系统。
J Neurosci. 2018 Nov 28;38(48):10295-10304. doi: 10.1523/JNEUROSCI.1200-18.2018. Epub 2018 Oct 22.
8
Spatial frequency processing in scene-selective cortical regions.场景选择性皮质区域中的空间频率处理
Neuroimage. 2015 May 15;112:86-95. doi: 10.1016/j.neuroimage.2015.02.058. Epub 2015 Mar 6.
9
Scene Perception in the Human Brain.人类大脑中的场景感知。
Annu Rev Vis Sci. 2019 Sep 15;5:373-397. doi: 10.1146/annurev-vision-091718-014809. Epub 2019 Jun 21.

引用本文的文献

6
Efficient Neural Decoding Based on Multimodal Training.基于多模态训练的高效神经解码
Brain Sci. 2024 Sep 28;14(10):988. doi: 10.3390/brainsci14100988.
7
Predictive processing of scenes and objects.场景和物体的预测性处理。
Nat Rev Psychol. 2024 Jan;3:13-26. doi: 10.1038/s44159-023-00254-0. Epub 2023 Nov 23.
9
Combined representation of visual features in the scene-selective cortex.场景选择性皮质中视觉特征的联合表示。
Behav Brain Res. 2024 Aug 5;471:115110. doi: 10.1016/j.bbr.2024.115110. Epub 2024 Jun 11.

本文引用的文献

2
High-level aftereffects to global scene properties.对全局场景属性的高级后效。
J Exp Psychol Hum Percept Perform. 2010 Dec;36(6):1430-42. doi: 10.1037/a0019058.
4
What does the retrosplenial cortex do?压后皮质有什么作用?
Nat Rev Neurosci. 2009 Nov;10(11):792-802. doi: 10.1038/nrn2733. Epub 2009 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验