Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
J Neurosci. 2011 Jan 26;31(4):1333-40. doi: 10.1523/JNEUROSCI.3885-10.2011.
Behavioral and computational studies suggest that visual scene analysis rapidly produces a rich description of both the objects and the spatial layout of surfaces in a scene. However, there is still a large gap in our understanding of how the human brain accomplishes these diverse functions of scene understanding. Here we probe the nature of real-world scene representations using multivoxel functional magnetic resonance imaging pattern analysis. We show that natural scenes are analyzed in a distributed and complementary manner by the parahippocampal place area (PPA) and the lateral occipital complex (LOC) in particular, as well as other regions in the ventral stream. Specifically, we study the classification performance of different scene-selective regions using images that vary in spatial boundary and naturalness content. We discover that, whereas both the PPA and LOC can accurately classify scenes, they make different errors: the PPA more often confuses scenes that have the same spatial boundaries, whereas the LOC more often confuses scenes that have the same content. By demonstrating that visual scene analysis recruits distinct and complementary high-level representations, our results testify to distinct neural pathways for representing the spatial boundaries and content of a visual scene.
行为和计算研究表明,视觉场景分析能快速生成对场景中物体和表面空间布局的丰富描述。然而,我们对于人类大脑如何完成这些不同的场景理解功能,仍然知之甚少。在这里,我们使用多体素功能磁共振成像模式分析来探究真实场景的表现本质。我们表明,内嗅区皮层的旁海马区(PPA)和外侧枕叶复合体(LOC),以及腹侧流中的其他区域,以分布式且互补的方式分析自然场景。具体来说,我们使用空间边界和自然度内容不同的图像来研究不同场景选择区域的分类性能。我们发现,PPA 和 LOC 都可以准确地对场景进行分类,但它们会产生不同的错误:PPA 更常混淆具有相同空间边界的场景,而 LOC 更常混淆具有相同内容的场景。通过证明视觉场景分析需要独特且互补的高级表示,我们的结果证明了用于表示视觉场景的空间边界和内容的不同神经通路。