Suppr超能文献

基于内容的图像检索应用于乳腺钼靶筛查中的BI-RADS组织分类。

Content-based image retrieval applied to BI-RADS tissue classification in screening mammography.

作者信息

de Oliveira Júlia Epischina Engrácia, de Albuquerque Araújo Arnaldo, Deserno Thomas M

机构信息

Júlia Epischina Engrácia de Oliveira, Arnaldo de Albuquerque Araújo, Department of Computer Science, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.

出版信息

World J Radiol. 2011 Jan 28;3(1):24-31. doi: 10.4329/wjr.v3.i1.24.

Abstract

AIM

To present a content-based image retrieval (CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classification.

METHODS

Breast density is characterized by image texture using singular value decomposition (SVD) and histograms. Pattern similarity is computed by a support vector machine (SVM) to separate the four BI-RADS tissue categories. The crucial number of remaining singular values is varied (SVD), and linear, radial, and polynomial kernels are investigated (SVM). The system is supported by a large reference database for training and evaluation. Experiments are based on 5-fold cross validation.

RESULTS

Adopted from DDSM, MIAS, LLNL, and RWTH datasets, the reference database is composed of over 10 000 various mammograms with unified and reliable ground truth. An average precision of 82.14% is obtained using 25 singular values (SVD), polynomial kernel and the one-against-one (SVM).

CONCLUSION

Breast density characterization using SVD allied with SVM for image retrieval enable the development of a CBIR system that can effectively aid radiologists in their diagnosis.

摘要

目的

提出一种基于内容的图像检索(CBIR)系统,该系统支持乳腺组织密度分类,并可用于处理链中以调整病变分割和分类的参数。

方法

使用奇异值分解(SVD)和直方图通过图像纹理对乳腺密度进行表征。通过支持向量机(SVM)计算模式相似度以区分四种BI-RADS组织类别。改变剩余奇异值的关键数量(SVD),并研究线性、径向和多项式核(SVM)。该系统由一个大型参考数据库支持,用于训练和评估。实验基于五折交叉验证。

结果

参考数据库采用DDSM、MIAS、LLNL和RWTH数据集,由超过10000张各种乳腺X线照片组成,具有统一且可靠的地面真值。使用25个奇异值(SVD)、多项式核和一对一(SVM)获得的平均精度为82.14%。

结论

将SVD与SVM相结合用于图像检索的乳腺密度表征能够开发出一种CBIR系统,该系统可以有效地帮助放射科医生进行诊断。

相似文献

4
An effective fine grading method of BI-RADS classification in mammography.一种有效的乳腺 X 线摄影 BI-RADS 分类精细分级方法。
Int J Comput Assist Radiol Surg. 2022 Feb;17(2):239-247. doi: 10.1007/s11548-021-02541-8. Epub 2021 Dec 23.
10
MammoSys: A content-based image retrieval system using breast density patterns.MammoSys:一种基于乳腺密度模式的图像内容检索系统。
Comput Methods Programs Biomed. 2010 Sep;99(3):289-97. doi: 10.1016/j.cmpb.2010.01.005. Epub 2010 Mar 7.

本文引用的文献

2
A comparison of methods for multiclass support vector machines.多类支持向量机方法的比较
IEEE Trans Neural Netw. 2002;13(2):415-25. doi: 10.1109/72.991427.
5
Extended query refinement for medical image retrieval.用于医学图像检索的扩展查询细化
J Digit Imaging. 2008 Sep;21(3):280-9. doi: 10.1007/s10278-007-9037-4. Epub 2007 May 12.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验