Snyder J L, Clark A, Fang D Z, Gaborski T R, Striemer C C, Fauchet P M, McGrath J L
Department of Biochemistry and Biophysics, University of Rochester, 601 Elmwood Avenue, Box 712, Rochester, NY 14642.
J Memb Sci. 2011 Mar 1;369(1-2):119-129. doi: 10.1016/j.memsci.2010.11.056.
Diffusion based separations are essential for laboratory and clinical dialysis processes. New molecularly thin nanoporous membranes may improve the rate and quality of separations achievable by these processes. In this work we have performed protein and small molecule separations with 15 nm thick porous nanocrystalline silicon (pnc-Si) membranes and compared the results to 1- and 3- dimensional models of diffusion through ultrathin membranes. The models predict the amount of resistance contributed by the membrane by using pore characteristics obtained by direct inspection of pnc-Si membranes in transmission electron micrographs. The theoretical results indicate that molecularly thin membranes are expected to enable higher resolution separations at times before equilibrium compared to thicker membranes with the same pore diameters and porosities. We also explored the impact of experimental parameters such as porosity, pore distribution, diffusion time, and chamber size on the sieving characteristics. Experimental results are found to be in good agreement with the theory, and ultrathin membranes are shown to impart little overall resistance to the diffusion of molecules smaller than the physical pore size cutoff. The largest molecules tested experience more hindrance than expected from simulations indicating that factors not incorporated in the models, such as molecule shape, electrostatic repulsion, and adsorption to pore walls, are likely important.
基于扩散的分离对于实验室和临床透析过程至关重要。新型分子级超薄纳米多孔膜可能会提高这些过程所能实现的分离速率和质量。在这项工作中,我们使用了厚度为15纳米的多孔纳米晶硅(pnc-Si)膜进行蛋白质和小分子的分离,并将结果与通过超薄膜扩散的一维和三维模型进行了比较。这些模型通过使用通过透射电子显微镜直接检查pnc-Si膜获得的孔隙特征来预测膜所贡献的阻力大小。理论结果表明,与具有相同孔径和孔隙率的较厚膜相比,分子级超薄膜有望在达到平衡之前的时间内实现更高分辨率的分离。我们还探讨了诸如孔隙率、孔径分布、扩散时间和腔室大小等实验参数对筛分特性的影响。实验结果与理论结果吻合良好,并且超薄膜对小于物理孔径截止值的分子扩散几乎没有整体阻力。所测试的最大分子所经历的阻碍比模拟预期的要大,这表明模型中未纳入的因素,如分子形状、静电排斥和对孔壁的吸附,可能很重要。