Suppr超能文献

通过超薄纳米多孔膜扩散进行分子分离的实验与理论分析。

An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes.

作者信息

Snyder J L, Clark A, Fang D Z, Gaborski T R, Striemer C C, Fauchet P M, McGrath J L

机构信息

Department of Biochemistry and Biophysics, University of Rochester, 601 Elmwood Avenue, Box 712, Rochester, NY 14642.

出版信息

J Memb Sci. 2011 Mar 1;369(1-2):119-129. doi: 10.1016/j.memsci.2010.11.056.

Abstract

Diffusion based separations are essential for laboratory and clinical dialysis processes. New molecularly thin nanoporous membranes may improve the rate and quality of separations achievable by these processes. In this work we have performed protein and small molecule separations with 15 nm thick porous nanocrystalline silicon (pnc-Si) membranes and compared the results to 1- and 3- dimensional models of diffusion through ultrathin membranes. The models predict the amount of resistance contributed by the membrane by using pore characteristics obtained by direct inspection of pnc-Si membranes in transmission electron micrographs. The theoretical results indicate that molecularly thin membranes are expected to enable higher resolution separations at times before equilibrium compared to thicker membranes with the same pore diameters and porosities. We also explored the impact of experimental parameters such as porosity, pore distribution, diffusion time, and chamber size on the sieving characteristics. Experimental results are found to be in good agreement with the theory, and ultrathin membranes are shown to impart little overall resistance to the diffusion of molecules smaller than the physical pore size cutoff. The largest molecules tested experience more hindrance than expected from simulations indicating that factors not incorporated in the models, such as molecule shape, electrostatic repulsion, and adsorption to pore walls, are likely important.

摘要

基于扩散的分离对于实验室和临床透析过程至关重要。新型分子级超薄纳米多孔膜可能会提高这些过程所能实现的分离速率和质量。在这项工作中,我们使用了厚度为15纳米的多孔纳米晶硅(pnc-Si)膜进行蛋白质和小分子的分离,并将结果与通过超薄膜扩散的一维和三维模型进行了比较。这些模型通过使用通过透射电子显微镜直接检查pnc-Si膜获得的孔隙特征来预测膜所贡献的阻力大小。理论结果表明,与具有相同孔径和孔隙率的较厚膜相比,分子级超薄膜有望在达到平衡之前的时间内实现更高分辨率的分离。我们还探讨了诸如孔隙率、孔径分布、扩散时间和腔室大小等实验参数对筛分特性的影响。实验结果与理论结果吻合良好,并且超薄膜对小于物理孔径截止值的分子扩散几乎没有整体阻力。所测试的最大分子所经历的阻碍比模拟预期的要大,这表明模型中未纳入的因素,如分子形状、静电排斥和对孔壁的吸附,可能很重要。

相似文献

2
High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes.
ACS Nano. 2010 Nov 23;4(11):6973-81. doi: 10.1021/nn102064c. Epub 2010 Nov 2.
3
Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
Nature. 2007 Feb 15;445(7129):749-53. doi: 10.1038/nature05532.
4
Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates.
Nanoscale. 2014 Sep 21;6(18):10798-805. doi: 10.1039/c4nr03070b. Epub 2014 Aug 8.
5
Ultrathin silicon membranes for wearable dialysis.
Adv Chronic Kidney Dis. 2013 Nov;20(6):508-15. doi: 10.1053/j.ackd.2013.08.001.
6
Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes.
J Phys Condens Matter. 2010 Nov 17;22(45):454134. doi: 10.1088/0953-8984/22/45/454134. Epub 2010 Oct 29.
7
Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture.
Biomaterials. 2010 Jul;31(20):5408-17. doi: 10.1016/j.biomaterials.2010.03.041. Epub 2010 Apr 15.
8
Influence of silicon dioxide capping layers on pore characteristics in nanocrystalline silicon membranes.
Nanotechnology. 2015 Feb 6;26(5):055706. doi: 10.1088/0957-4484/26/5/055706. Epub 2015 Jan 15.
9
Protein-Enabled Size-Selective Defect-Sealing of Atomically Thin 2D Membranes for Dialysis and Nanoscale Separations.
Nano Lett. 2025 Jan 8;25(1):193-203. doi: 10.1021/acs.nanolett.4c04706. Epub 2024 Dec 23.
10
Highly porous silicon membranes fabricated from silicon nitride/silicon stacks.
Small. 2014 Jul 23;10(14):2946-53. doi: 10.1002/smll.201303447. Epub 2014 Mar 13.

引用本文的文献

1
Oxygen transport in nanoporous SiN membrane compared to PDMS and polypropylene for microfluidic ECMO.
Biomed Microdevices. 2025 May 28;27(2):22. doi: 10.1007/s10544-025-00750-5.
2
Oxygen Transport in Nanoporous SiN Membrane Compared to PDMS and Polypropylene for Microfluidic ECMO.
bioRxiv. 2025 Jan 5:2025.01.04.631337. doi: 10.1101/2025.01.04.631337.
6
Endothelial tissue remodeling induced by intraluminal pressure enhances paracellular solute transport.
iScience. 2023 Jun 15;26(7):107141. doi: 10.1016/j.isci.2023.107141. eCollection 2023 Jul 21.
8
The Modular µSiM: A Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro.
Adv Healthc Mater. 2022 Sep;11(18):e2200804. doi: 10.1002/adhm.202200804. Epub 2022 Aug 15.
9
Epitaxy, exfoliation, and strain-induced magnetism in rippled Heusler membranes.
Nat Commun. 2021 May 3;12(1):2494. doi: 10.1038/s41467-021-22784-y.
10
Use of Nanosphere Self-Assembly to Pattern Nanoporous Membranes for the Study of Extracellular Vesicles.
Nanoscale Adv. 2020 Oct;2(10):4427-4436. doi: 10.1039/D0NA00142B. Epub 2020 May 12.

本文引用的文献

1
High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes.
ACS Nano. 2010 Nov 23;4(11):6973-81. doi: 10.1021/nn102064c. Epub 2010 Nov 2.
2
Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture.
Biomaterials. 2010 Jul;31(20):5408-17. doi: 10.1016/j.biomaterials.2010.03.041. Epub 2010 Apr 15.
3
High-Performance Silicon Nanopore Hemofiltration Membranes.
J Memb Sci. 2009 Jan 5;326(1):58-63. doi: 10.1016/j.memsci.2008.09.039.
4
Advantages of new hemodialysis membranes and equipment.
Nephron Clin Pract. 2010;114(3):c165-72. doi: 10.1159/000262298. Epub 2009 Nov 28.
5
A pilot, randomized, double-blind, cross-over study of high cut-off versus high-flux dialysis membranes.
Blood Purif. 2009;28(4):365-72. doi: 10.1159/000235961. Epub 2009 Sep 3.
6
The influence of protein adsorption on nanoparticle association with cultured endothelial cells.
Biomaterials. 2009 Feb;30(4):603-10. doi: 10.1016/j.biomaterials.2008.09.050. Epub 2008 Nov 13.
7
A structure-permeability relationship of ultrathin nanoporous silicon membrane: a comparison with the nuclear envelope.
J Am Chem Soc. 2008 Apr 2;130(13):4230-1. doi: 10.1021/ja711258w. Epub 2008 Mar 7.
8
Hindered diffusion in microporous membranes with known pore geometry.
Science. 1970 Dec 18;170(3964):1302-5. doi: 10.1126/science.170.3964.1302.
9
The long road to wearable blood-cleansing devices.
Blood Purif. 2007;25(4):377-82. doi: 10.1159/000107774. Epub 2007 Sep 3.
10
Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
Nature. 2007 Feb 15;445(7129):749-53. doi: 10.1038/nature05532.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验