Suppr超能文献

通过π轨道的横向耦合控制单分子电导。

Controlling single-molecule conductance through lateral coupling of π orbitals.

机构信息

Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.

出版信息

Nat Nanotechnol. 2011 Apr;6(4):226-31. doi: 10.1038/nnano.2011.20. Epub 2011 Feb 20.

Abstract

In recent years, various single-molecule electronic components have been demonstrated. However, it remains difficult to predict accurately the conductance of a single molecule and to control the lateral coupling between the π orbitals of the molecule and the orbitals of the electrodes attached to it. This lateral coupling is well known to cause broadening and shifting of the energy levels of the molecule; this, in turn, is expected to greatly modify the conductance of an electrode-molecule-electrode junction. Here, we demonstrate a new method, based on lateral coupling, to mechanically and reversibly control the conductance of a single-molecule junction by mechanically modulating the angle between a single pentaphenylene molecule bridged between two metal electrodes. Changing the angle of the molecule from a highly tilted state to an orientation nearly perpendicular to the electrodes changes the conductance by an order of magnitude, which is in qualitative agreement with theoretical models of molecular π-orbital coupling to a metal electrode. The lateral coupling is also directly measured by applying a fast mechanical perturbation in the horizontal plane, thus ruling out changes in the contact geometry or molecular conformation as the source for the conductance change.

摘要

近年来,已经展示了各种单分子电子元件。然而,仍然难以准确预测单分子的电导率,并且难以控制分子的π轨道与附着在其上的电极的轨道之间的横向耦合。众所周知,这种横向耦合会导致分子能级的展宽和移动;反过来,这预计会极大地改变电极-分子-电极结的电导率。在这里,我们展示了一种新的基于横向耦合的方法,通过机械地调制在两个金属电极之间桥接的单个五苯分子的角度来机械地和可逆地控制单分子结的电导率。将分子的角度从高度倾斜的状态改变为几乎垂直于电极的取向,电导率会发生数量级的变化,这与分子π轨道与金属电极耦合的理论模型定性一致。通过在水平平面上施加快速机械扰动也可以直接测量横向耦合,从而排除了接触几何形状或分子构象变化作为电导变化的来源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验