WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.
J Am Chem Soc. 2011 Mar 16;133(10):3601-8. doi: 10.1021/ja1102234. Epub 2011 Feb 22.
A novel method has been devised to derive kinetic information about reactions in microfluidic systems. Advantages have been demonstrated over conventional procedures for a Knoevenagel condensation reaction in terms of the time required to obtain the data (fivefold reduction) and the efficient use of reagents (tenfold reduction). The procedure is based on a step change from a low (e.g., 0.6 μL min(-1)) to a high (e.g., 14 μL min(-1)) flow rate and real-time noninvasive Raman measurements at the end of the flow line, which allows location-specific information to be obtained without the need to move the measurement probe along the microreactor channel. To validate the method, values of the effective reaction order n were obtained employing two different experimental methodologies. Using these values of n, rate constants k were calculated and compared. The values of k derived from the proposed method at 10 and 40 °C were 0.0356 ± 0.0008 mol(-0.3) dm(0.9) s(-1) (n = 1.3) and 0.24 ± 0.018 mol(-0.1) dm(0.3) s(-1) (n = 1.1), respectively, whereas the values obtained using a more laborious conventional methodology were 0.0335 ± 0.0032 mol(-0.4) dm(1.2) s(-1) (n = 1.4) at 10 °C and 0.244 ± 0.032 mol(-0.3) dm(0.9) s(-1) (n = 1.3) at 40 °C. The new approach is not limited to analysis by Raman spectrometry and can be used with different techniques that can be incorporated into the end of the flow path to provide rapid measurements.
已经设计出一种新方法来获取微流控系统中反应的动力学信息。与传统的 Knoevenagel 缩合反应相比,该方法在获得数据所需的时间(减少五倍)和试剂的有效利用(减少十倍)方面具有优势。该方法基于从低流量(例如 0.6 μL min(-1))到高流量(例如 14 μL min(-1))的阶跃变化,以及在流路末端进行实时非侵入式拉曼测量,从而无需沿微反应器通道移动测量探头即可获得位置特异性信息。为了验证该方法,采用两种不同的实验方法获得了有效反应级数 n 的值。使用这些 n 值,计算并比较了速率常数 k。在 10 和 40°C 下,从提出的方法中得到的 k 值分别为 0.0356 ± 0.0008 mol(-0.3) dm(0.9) s(-1) (n = 1.3) 和 0.24 ± 0.018 mol(-0.1) dm(0.3) s(-1) (n = 1.1),而使用更为繁琐的传统方法得到的值分别为 0.0335 ± 0.0032 mol(-0.4) dm(1.2) s(-1) (n = 1.4)在 10°C 和 0.244 ± 0.032 mol(-0.3) dm(0.9) s(-1) (n = 1.3)在 40°C。新方法不仅限于拉曼光谱分析,还可以与不同的技术结合使用,这些技术可以集成到流路末端以提供快速测量。