Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Delft, The Netherlands.
Metab Eng. 2011 May;13(3):294-306. doi: 10.1016/j.ymben.2011.02.005. Epub 2011 Feb 24.
Kinetic modeling of metabolism holds great potential for metabolic engineering but is hindered by the gap between model complexity and availability of in vivo data. There is also growing interest in network-wide thermodynamic analyses, which are currently limited by the scarcity and unreliability of thermodynamic reference data. Here we propose an in vivo data-driven approach to simultaneously address both problems. We then demonstrate the procedure in Saccharomyces cerevisiae, using chemostats to generate a large flux/metabolite dataset, under 32 conditions spanning a large range of fluxes. Reactions were classified as pseudo-, near- or far-from-equilibrium, allowing the complexity of mathematical description to be tailored to the kinetic behavior displayed in vivo. For 3/4 of the reactions we derived fully in vivo-parameterized kinetic descriptions which can be readily incorporated into models. For near-equilibrium reactions this involved a new simplified format, dubbed "Q-linear kinetics". We also demonstrate, for the first time, systematic estimation of apparent in vivo K(eq) values. Remarkably, comparison with E. coli data suggests they constitute a suitable in vivo interspecies thermodynamic reference.
代谢动力学建模在代谢工程中有很大的应用潜力,但受到模型复杂性和体内数据可用性之间差距的限制。人们对网络范围的热力学分析也越来越感兴趣,但目前受到热力学参考数据稀缺和不可靠的限制。在这里,我们提出了一种基于体内数据的方法来同时解决这两个问题。然后,我们在酿酒酵母中进行了演示,使用恒化器在 32 种条件下生成了一个大的通量/代谢物数据集,涵盖了很大的通量范围。将反应分为准平衡、近平衡和远平衡三类,允许根据体内显示的动力学行为来调整数学描述的复杂性。对于 3/4 的反应,我们推导出了完全基于体内参数化的动力学描述,可以很容易地纳入模型中。对于近平衡反应,我们采用了一种新的简化格式,称为“Q-线性动力学”。我们还首次展示了系统地估计表观体内 K(eq)值。值得注意的是,与大肠杆菌数据的比较表明,它们构成了一个合适的体内种间热力学参考。