Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
Mol Syst Biol. 2011 Mar 1;7:471. doi: 10.1038/msb.2011.4.
Advances in synthetic biology have resulted in the development of genetic tools that support the design of complex biological systems encoding desired functions. The majority of efforts have focused on the development of regulatory tools in bacteria, whereas fewer tools exist for the tuning of expression levels in eukaryotic organisms. Here, we describe a novel class of RNA-based control modules that provide predictable tuning of expression levels in the yeast Saccharomyces cerevisiae. A library of synthetic control modules that act through posttranscriptional RNase cleavage mechanisms was generated through an in vivo screen, in which structural engineering methods were applied to enhance the insulation and modularity of the resulting components. This new class of control elements can be combined with any promoter to support titration of regulatory strategies encoded in transcriptional regulators and thus more sophisticated control schemes. We applied these synthetic controllers to the systematic titration of flux through the ergosterol biosynthesis pathway, providing insight into endogenous control strategies and highlighting the utility of this control module library for manipulating and probing biological systems.
合成生物学的进展带来了支持设计编码所需功能的复杂生物系统的遗传工具。大多数努力都集中在细菌中调控工具的开发上,而用于真核生物表达水平调节的工具则较少。在这里,我们描述了一类新的基于 RNA 的控制模块,它们可以在酵母酿酒酵母中提供可预测的表达水平调节。通过体内筛选生成了一个通过转录后 RNA 切割机制起作用的合成控制模块文库,其中应用了结构工程方法来增强所得组件的绝缘性和模块性。这种新型控制元件可以与任何启动子结合使用,以支持在转录调控因子中编码的调控策略的滴定,从而实现更复杂的控制方案。我们将这些合成控制器应用于甾醇生物合成途径通量的系统滴定,深入了解内源性控制策略,并强调了该控制模块库在操纵和探测生物系统方面的实用性。