Suppr超能文献

沙鱼游动的力学模型揭示了高性能地下沙中游泳的原理。

Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming.

机构信息

Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA.

出版信息

J R Soc Interface. 2011 Sep 7;8(62):1332-45. doi: 10.1098/rsif.2010.0678. Epub 2011 Mar 4.

Abstract

We integrate biological experiment, empirical theory, numerical simulation and a physical model to reveal principles of undulatory locomotion in granular media. High-speed X-ray imaging of the sandfish lizard, Scincus scincus, in 3 mm glass particles shows that it swims within the medium without using its limbs by propagating a single-period travelling sinusoidal wave down its body, resulting in a wave efficiency, η, the ratio of its average forward speed to the wave speed, of approximately 0.5. A resistive force theory (RFT) that balances granular thrust and drag forces along the body predicts η close to the observed value. We test this prediction against two other more detailed modelling approaches: a numerical model of the sandfish coupled to a discrete particle simulation of the granular medium, and an undulatory robot that swims within granular media. Using these models and analytical solutions of the RFT, we vary the ratio of undulation amplitude to wavelength (A/λ) and demonstrate an optimal condition for sand-swimming, which for a given A results from the competition between η and λ. The RFT, in agreement with the simulated and physical models, predicts that for a single-period sinusoidal wave, maximal speed occurs for A/λ ≈ 0.2, the same kinematics used by the sandfish.

摘要

我们整合了生物学实验、经验理论、数值模拟和物理模型,以揭示在颗粒介质中波动运动的原理。对沙虎蜥(Scincus scincus)在 3 毫米玻璃颗粒中的高速 X 光成像显示,它在不使用肢体的情况下在介质中游泳,而是通过在身体上传播单个周期的正弦行波,从而产生波效率 η,即其平均前进速度与波速的比值,约为 0.5。平衡颗粒推力和阻力的阻力理论(RFT)预测 η 接近观察到的值。我们通过两种更详细的建模方法对该预测进行了测试:与离散颗粒模拟颗粒介质耦合的沙虎蜥数值模型,以及在颗粒介质中游泳的波动机器人。使用这些模型和 RFT 的解析解,我们改变了波动幅度与波长的比值(A/λ),并展示了沙中游泳的最佳条件,对于给定的 A,这是由 η 和 λ 之间的竞争产生的。RFT 与模拟和物理模型一致,预测对于单个周期的正弦波,最大速度出现在 A/λ≈0.2 时,这与沙虎蜥的运动学相同。

相似文献

2
Mechanics of undulatory swimming in a frictional fluid.在粘性流体中波动游泳的力学。
PLoS Comput Biol. 2012;8(12):e1002810. doi: 10.1371/journal.pcbi.1002810. Epub 2012 Dec 27.
6
Emergence of the advancing neuromechanical phase in a resistive force dominated medium.阻力主导介质中神经机械相位超前的出现。
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10123-8. doi: 10.1073/pnas.1302844110. Epub 2013 Jun 3.
8
Low-resistive vibratory penetration in granular media.颗粒介质中的低电阻振动贯入
PLoS One. 2017 Apr 18;12(4):e0175412. doi: 10.1371/journal.pone.0175412. eCollection 2017.

引用本文的文献

7
Self-propulsion via slipping: Frictional swimming in multilegged locomotors.自主滑行:多足运动器的摩擦推进式游泳
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2213698120. doi: 10.1073/pnas.2213698120. Epub 2023 Mar 10.
8
Fundamentals of burrowing in soft animals and robots.软体动物和机器人的挖掘基础。
Front Robot AI. 2023 Jan 30;10:1057876. doi: 10.3389/frobt.2023.1057876. eCollection 2023.
10
Helically-driven granular mobility and gravity-variant scaling relations.螺旋驱动的颗粒流动性与重力变化缩放关系
RSC Adv. 2019 Apr 23;9(22):12572-12579. doi: 10.1039/c9ra00399a. eCollection 2019 Apr 17.

本文引用的文献

2
Drag induced lift in granular media.颗粒介质中的曳力诱导升力。
Phys Rev Lett. 2011 Jan 14;106(2):028001. doi: 10.1103/PhysRevLett.106.028001. Epub 2011 Jan 13.
4
The mechanism of locomotion in snakes.蛇的运动机制。
J Exp Biol. 1946 Dec;23(2):101-20. doi: 10.1242/jeb.23.2.101.
5
Swimming in granular media.在颗粒介质中游泳。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):020301. doi: 10.1103/PhysRevE.80.020301. Epub 2009 Aug 7.
7
The mechanics of slithering locomotion.滑行运动的力学原理。
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10081-5. doi: 10.1073/pnas.0812533106. Epub 2009 Jun 8.
10
Limbless undulatory propulsion on land.在陆地上的无肢体波动推进。
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3179-84. doi: 10.1073/pnas.0705442105. Epub 2008 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验