Suppr超能文献

微波辐射对大肠杆菌的特定电磁效应。

Specific electromagnetic effects of microwave radiation on Escherichia coli.

机构信息

Faculty of Life and Social Sciences, Swinburne University, Melbourne, Victoria, Australia.

出版信息

Appl Environ Microbiol. 2011 May;77(9):3017-22. doi: 10.1128/AEM.01899-10. Epub 2011 Mar 4.

Abstract

The present study investigated the effects of microwave (MW) radiation applied under a sublethal temperature on Escherichia coli. The experiments were conducted at a frequency of 18 GHz and at a temperature below 40°C to avoid the thermal degradation of bacterial cells during exposure. The absorbed power was calculated to be 1,500 kW/m(3), and the electric field was determined to be 300 V/m. Both values were theoretically confirmed using CST Microwave Studio 3D Electromagnetic Simulation Software. As a negative control, E. coli cells were also thermally heated to temperatures up to 40°C using Peltier plate heating. Scanning electron microscopy (SEM) analysis performed immediately after MW exposure revealed that the E. coli cells exhibited a cell morphology significantly different from that of the negative controls. This MW effect, however, appeared to be temporary, as following a further 10-min elapsed period, the cell morphology appeared to revert to a state that was identical to that of the untreated controls. Confocal laser scanning microscopy (CLSM) revealed that fluorescein isothiocyanate (FITC)-conjugated dextran (150 kDa) was taken up by the MW-treated cells, suggesting that pores had formed within the cell membrane. Cell viability experiments revealed that the MW treatment was not bactericidal, since 88% of the cells were recovered after radiation. It is proposed that one of the effects of exposing E. coli cells to MW radiation under sublethal temperature conditions is that the cell surface undergoes a modification that is electrokinetic in nature, resulting in a reversible MW-induced poration of the cell membrane.

摘要

本研究探讨了亚致死温度下微波(MW)辐射对大肠杆菌的影响。实验在 18GHz 的频率和低于 40°C 的温度下进行,以避免暴露过程中细菌细胞的热降解。吸收的功率被计算为 1500kW/m(3),电场被确定为 300V/m。这两个值都是使用 CST 微波工作室 3D 电磁仿真软件理论上确认的。作为负对照,大肠杆菌细胞也通过珀耳帖板加热被加热到高达 40°C 的温度。MW 暴露后立即进行的扫描电子显微镜(SEM)分析表明,大肠杆菌细胞表现出与负对照明显不同的细胞形态。然而,这种 MW 效应似乎是暂时的,因为在进一步的 10 分钟后,细胞形态似乎恢复到未处理对照的状态。共聚焦激光扫描显微镜(CLSM)显示,异硫氰酸荧光素(FITC)标记的葡聚糖(150kDa)被 MW 处理的细胞摄取,表明细胞膜内形成了孔。细胞活力实验表明,MW 处理不是杀菌的,因为辐射后 88%的细胞被回收。据提议,将大肠杆菌细胞暴露于亚致死温度条件下的 MW 辐射的一种影响是,细胞表面经历一种具有电泳性质的修饰,导致细胞膜的可逆 MW 诱导穿孔。

相似文献

1
Specific electromagnetic effects of microwave radiation on Escherichia coli.
Appl Environ Microbiol. 2011 May;77(9):3017-22. doi: 10.1128/AEM.01899-10. Epub 2011 Mar 4.
2
Thermal and nonthermal effects of discontinuous microwave exposure (2.45 gigahertz) on the cell membrane of Escherichia coli.
Appl Environ Microbiol. 2014 Aug;80(16):4832-41. doi: 10.1128/AEM.00789-14. Epub 2014 Jun 6.
5
Effects of static magnetic fields on Escherichia coli.
Micron. 2009 Dec;40(8):894-8. doi: 10.1016/j.micron.2009.05.010. Epub 2009 Jun 9.
6
Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure.
Appl Environ Microbiol. 2000 May;66(5):2243-7. doi: 10.1128/AEM.66.5.2243-2247.2000.
7
Effects of 2.6-4.0 GHz microwave radiation on E-coli B.
J Microw Power. 1977 Jun;12(2):141-4. doi: 10.1080/16070658.1977.11689040.
8
Effect of microwave radiation on cells treated with membrane-injuring substances.
Exp Pathol (Jena). 1977;13(6):296-301. doi: 10.1016/s0014-4908(77)80016-1.
10
The effects of radiofrequency fields on cell proliferation are non-thermal.
Bioelectrochem Bioenerg. 1999 Feb;48(1):177-80. doi: 10.1016/s0302-4598(98)00238-4.

引用本文的文献

2
Translocation and fate of nanospheres in pheochromocytoma cells following exposure to synchrotron-sourced terahertz radiation.
J Synchrotron Radiat. 2023 Jul 1;30(Pt 4):780-787. doi: 10.1107/S1600577523004228. Epub 2023 Jun 20.
3
Development of a microwave-based extraction for forensic biological samples.
Forensic Sci Int Synerg. 2022 Nov 29;5:100291. doi: 10.1016/j.fsisyn.2022.100291. eCollection 2022.
4
Microwaves, a potential treatment for bacteria: A review.
Front Microbiol. 2022 Jul 25;13:888266. doi: 10.3389/fmicb.2022.888266. eCollection 2022.
5
Localization of nanospheres in pheochromocytoma-like cells following exposure to high-frequency electromagnetic fields at 18 GHz.
R Soc Open Sci. 2022 Jun 29;9(6):220520. doi: 10.1098/rsos.220520. eCollection 2022 Jun.
7
Translocation of silica nanospheres through giant unilamellar vesicles (GUVs) induced by a high frequency electromagnetic field.
RSC Adv. 2021 Sep 23;11(50):31408-31420. doi: 10.1039/d1ra05459g. eCollection 2021 Sep 21.
8
Approaches for the Elimination of Microbial Contaminants from Mold. Leaves Intended for Tea Bagging and Evaluation of Formulation.
Adv Pharmacol Pharm Sci. 2022 Feb 27;2022:7235489. doi: 10.1155/2022/7235489. eCollection 2022.
9
Enhanced hydrogenation catalyst synthesized by Desulfovibrio desulfuricans exposed to a radio frequency magnetic field.
Microb Biotechnol. 2021 Sep;14(5):2041-2058. doi: 10.1111/1751-7915.13878. Epub 2021 Jul 3.
10
Nonionizing Electromagnetic Field: A Promising Alternative for Growing Control Yeast.
J Fungi (Basel). 2021 Apr 8;7(4):281. doi: 10.3390/jof7040281.

本文引用的文献

1
Differences in colonisation of five marine bacteria on two types of glass surfaces.
Biofouling. 2009 Oct;25(7):621-31. doi: 10.1080/08927010903012773.
2
The influence of different membrane components on the electrical stability of bilayer lipid membranes.
Biochim Biophys Acta. 2010 Jan;1798(1):21-31. doi: 10.1016/j.bbamem.2009.10.003. Epub 2009 Oct 14.
3
A new sterilization technique of bovine pericardial biomaterial using microwave radiation.
Tissue Eng Part C Methods. 2009 Sep;15(3):445-54. doi: 10.1089/ten.tec.2008.0350.
4
Measurement of the efficiency of cell membrane electroporation using pulsed ac fields.
Phys Med Biol. 2008 Sep 7;53(17):4747-57. doi: 10.1088/0031-9155/53/17/019. Epub 2008 Aug 13.
5
The effects of high-power microwaves on the ultrastructure of Bacillus subtilis.
Lett Appl Microbiol. 2008 Jul;47(1):35-40. doi: 10.1111/j.1472-765X.2008.02384.x. Epub 2008 Jun 9.
6
Non-thermal effects in the microwave induced unfolding of proteins observed by chaperone binding.
Bioelectromagnetics. 2008 May;29(4):324-30. doi: 10.1002/bem.20382.
7
Can "microwave effects" be explained by enhanced diffusion?
Phys Chem Chem Phys. 2007 Jun 21;9(23):2976-82. doi: 10.1039/b617358f. Epub 2007 Apr 26.
8
Dielectric characterization of bacterial cells using dielectrophoresis.
Bioelectromagnetics. 2007 Jul;28(5):393-401. doi: 10.1002/bem.20317.
9
Modeling electroporation in a single cell.
Biophys J. 2007 Jan 15;92(2):404-17. doi: 10.1529/biophysj.106.094235. Epub 2006 Oct 20.
10
Mechanisms for interaction between RF fields and biological tissue.
Bioelectromagnetics. 2005;Suppl 7:S98-S106. doi: 10.1002/bem.20119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验