Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada.
Nat Chem. 2009 Aug;1(5):390-6. doi: 10.1038/nchem.290. Epub 2009 Jul 24.
Metal-nucleic acid cages are a promising new class of materials. Like metallo-supramolecular cages, these systems can use their metals for redox, photochemical, magnetic and catalytic control over encapsulated cargo. However, using DNA provides the potential to program pore size, geometry, chemistry and addressability, and the ability to symmetrically and asymmetrically position transition metals within the three-dimensional framework. Here we report the quantitative construction of metal-DNA cages, with the site-specific incorporation of a range of metals within a three-dimensional DNA architecture. Oligonucleotide strands containing specific environments suitable for transition-metal coordination were first organized into two DNA triangles. These triangles were then assembled into a DNA prism with linking strands. Metal centres were subsequently incorporated into the prisms at the pre-programmed locations. This unprecedented ability to position transition metals within a three-dimensional framework could lead to metal-DNA hosts with applications for the encapsulation, sensing, modification and release of biomolecules and nanomaterials.
金属-核酸笼是一类很有前途的新型材料。与金属超分子笼类似,这些体系可以利用金属进行氧化还原、光化学、磁学和催化控制,从而对被包裹的货物进行控制。然而,使用 DNA 则提供了对孔大小、几何形状、化学性质和可寻址性进行编程的可能性,以及在三维框架内对称和非对称地定位过渡金属的能力。在这里,我们报告了金属-DNA 笼的定量构建,其中在三维 DNA 结构内特定位置特异性地掺入了一系列金属。首先,将含有适合过渡金属配位的特定环境的寡核苷酸链组织成两个 DNA 三角形。然后,将这些三角形用连接链组装成一个 DNA 棱柱体。随后,金属中心被掺入到预先编程的位置的棱柱体中。这种在三维框架内定位过渡金属的前所未有的能力可能会导致具有封装、传感、修饰和释放生物分子和纳米材料应用的金属-DNA 主体。