Suppr超能文献

空间不变矢量量化:一种用于包括病理学在内的多类图像主题的模式匹配算法。

Spatially Invariant Vector Quantization: A pattern matching algorithm for multiple classes of image subject matter including pathology.

作者信息

Hipp Jason D, Cheng Jerome Y, Toner Mehmet, Tompkins Ronald G, Balis Ulysses J

机构信息

Department of Pathology, University of Michigan Health System, M4233A Medical Science I, 1301 Catherine, Ann Arbor, MI 48109-0602 USA.

出版信息

J Pathol Inform. 2011 Feb 26;2:13. doi: 10.4103/2153-3539.77175.

Abstract

INTRODUCTION

HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise.

RESULTS

In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings.

CONCLUSION

With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.

摘要

引言

从历史角度来看,病理学中图像分析和模式识别算法的有效临床应用受到两个关键限制:1)数字全切片图像数据集的可用性;2)执业病理学家在应用此类算法方面相对缺乏领域知识。随着全切片成像解决方案近期的迅速采用,前一个限制已基本得到解决。然而,鉴于当代病理学家一般不太可能在短期内获得先进的图像分析技能,后一个问题仍然存在,因此凸显了对一类算法的需求,这类算法应同时具备图像领域(或器官系统)独立性和极其易用的特性,无需专门培训或专业知识。

结果

在本报告中,我们提出了一种新颖的通用案例模式识别算法——空间不变矢量量化(SIVQ),它克服了上述知识缺陷。SIVQ基本基于传统的矢量量化(VQ)模式识别方法,通过使用具有连续对称性的环形矢量(与不具有连续对称性的方形或矩形矢量相对),获得了卓越的性能和基本为零训练的工作流程模型。利用连续对称性固有的随机匹配特性,单个环形矢量在匹配可能性上可展现高达一百万倍的提升,这与传统VQ矢量形成对比。SIVQ被用于在广泛的大体和微观用例场景中展示快速且高精度的模式识别能力。

结论

基于迄今观察到的SIVQ性能,我们发现有证据表明,确实存在一类图像分析/模式识别算法,适合部署在病理学家能够单独有效地将其作为交钥匙解决方案纳入临床工作流程的环境中。我们预计,SIVQ以及其他相关的与类别无关的模式识别算法,将成为执业病理学家可立即使用的数字图像分析方法总体工具库的一部分,而无需即时配备图像分析专家。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa52/3049270/1a486182233e/JPI-2-13-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验