Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California, USA.
Nat Struct Mol Biol. 2011 Apr;18(4):457-62. doi: 10.1038/nsmb.2011. Epub 2011 Mar 13.
During protein synthesis, mRNA and tRNA undergo coupled translocation through the ribosome in a process that is catalyzed by elongation factor G (EF-G). On the basis of cryo-EM reconstructions, counterclockwise and clockwise rotational movements between the large and small ribosomal subunits have been implicated in a proposed ratcheting mechanism to drive the unidirectional movement of translocation. We used a combination of two fluorescence-based approaches to study the timing of these events, intersubunit fluorescence resonance energy transfer measurements to observe relative rotational movement of the subunits, and a fluorescence quenching assay to monitor translocation of mRNA. Binding of EF-G-GTP first induces rapid counterclockwise intersubunit rotation, followed by a slower, clockwise reversal of the rotational movement. We compared the rates of these movements and found that mRNA translocation occurs during the second, clockwise rotation event, corresponding to the transition from the hybrid state to the classical state.
在蛋白质合成过程中,mRNA 和 tRNA 与延伸因子 G(EF-G)一起通过核糖体进行偶联易位,这一过程被催化。基于低温电镜重建,大、小核糖体亚基之间的逆时针和顺时针旋转运动被认为与一个建议的棘轮机制有关,该机制可驱动易位的单向运动。我们使用两种基于荧光的方法来研究这些事件的时间顺序,即亚基间荧光共振能量转移测量来观察亚基的相对旋转运动,以及荧光猝灭测定来监测 mRNA 的易位。EF-G-GTP 的结合首先诱导快速的逆时针亚基间旋转,然后是较慢的顺时针旋转运动的逆转。我们比较了这些运动的速度,发现 mRNA 易位发生在第二次,即顺时针旋转事件期间,对应于从杂交状态到经典状态的转变。