Suppr超能文献

枕叶皮层中自发的、视觉驱动的高频振荡:癫痫患者的颅内记录。

Spontaneous and visually driven high-frequency oscillations in the occipital cortex: intracranial recording in epileptic patients.

机构信息

Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan 48201, USA.

出版信息

Hum Brain Mapp. 2012 Mar;33(3):569-83. doi: 10.1002/hbm.21233. Epub 2011 Mar 22.

Abstract

High-frequency oscillations (HFOs) at ≥80 Hz of nonepileptic nature spontaneously emerge from human cerebral cortex. In 10 patients with extraoccipital lobe epilepsy, we compared the spectral-spatial characteristics of HFOs spontaneously arising from the nonepileptic occipital cortex with those of HFOs driven by a visual task as well as epileptogenic HFOs arising from the extraoccipital seizure focus. We identified spontaneous HFOs at ≥80 Hz with a mean duration of 330 ms intermittently emerging from the occipital cortex during interictal slow-wave sleep. The spectral frequency band of spontaneous occipital HFOs was similar to that of visually driven HFOs. Spontaneous occipital HFOs were spatially sparse and confined to smaller areas, whereas visually driven HFOs involved the larger areas including the more rostral sites. Neither spectral frequency band nor amplitude of spontaneous occipital HFOs significantly differed from those of epileptogenic HFOs. Spontaneous occipital HFOs were strongly locked to the phase of delta activity, but the strength of δ-phase coupling decayed from 1 to 3 Hz. Conversely, epileptogenic extraoccipital HFOs were locked to the phase of delta activity about equally in the range from 1 to 3 Hz. The occipital cortex spontaneously generates physiological HFOs which may stand out on electrocorticography traces as prominently as pathological HFOs arising from elsewhere; this observation should be taken into consideration during presurgical evaluation. Coupling of spontaneous delta and HFOs may increase the understanding of significance of δ-oscillations during slow-wave sleep. Further studies are warranted to determine whether δ-phase coupling distinguishes physiological from pathological HFOs or simply differs across anatomical locations.

摘要

自发性非癫痫性高频振荡(HFOs)≥80 Hz 从人大脑皮质中自发出现。在 10 例枕叶外癫痫患者中,我们比较了自发出现于非癫痫性枕叶皮质的 HFOs 与视觉任务驱动的 HFOs 以及来自枕叶外癫痫灶的致痫性 HFOs 的频谱-空间特征。我们确定了≥80 Hz 的自发性 HFOs,其在 ictus 间慢波睡眠期间以 330ms 的平均持续时间间歇性地从枕叶皮质出现。自发出现的枕叶 HFOs 的频谱频率带与视觉驱动的 HFOs 相似。自发性枕叶 HFOs 在空间上稀疏且局限于较小区域,而视觉驱动的 HFOs 则涉及更大的区域,包括更靠前的部位。自发性枕叶 HFOs 的频谱频率带和振幅均与致痫性 HFOs 无显著差异。自发性枕叶 HFOs 与 δ 活动的相位紧密锁定,但 δ 相耦合的强度从 1 到 3 Hz 衰减。相反,致痫性枕叶外 HFOs 在 1 到 3 Hz 的范围内与 δ 活动的相位锁定大致相等。枕叶皮质自发产生生理 HFOs,这些 HFOs在脑电描记图上可能与来自其他部位的病理性 HFOs一样突出;在术前评估期间应考虑到这一观察结果。自发 δ 波和 HFOs 的耦合可能有助于理解慢波睡眠期间 δ 振荡的意义。需要进一步研究以确定 δ 相耦合是否可以区分生理性和病理性 HFOs,或者是否只是在解剖位置上存在差异。

相似文献

2
Interictal high-frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves.
Clin Neurophysiol. 2016 Jun;127(6):2489-99. doi: 10.1016/j.clinph.2016.03.022. Epub 2016 Apr 6.
3
The spatial and signal characteristics of physiologic high frequency oscillations.
Epilepsia. 2014 Dec;55(12):1986-95. doi: 10.1111/epi.12851. Epub 2014 Dec 3.
5
Interictal coupling of HFOs and slow oscillations predicts the seizure-onset pattern in mesiotemporal lobe epilepsy.
Epilepsia. 2019 Jun;60(6):1160-1170. doi: 10.1111/epi.15541. Epub 2019 May 14.
6
Epileptic high-frequency oscillations in intraoperative electrocorticography: the effect of propofol.
Epilepsia. 2012 Oct;53(10):1799-809. doi: 10.1111/j.1528-1167.2012.03650.x. Epub 2012 Sep 17.
7
Ictal high-frequency oscillations at 80-200 Hz coupled with delta phase in epileptic spasms.
Epilepsia. 2011 Oct;52(10):e130-4. doi: 10.1111/j.1528-1167.2011.03263.x. Epub 2011 Sep 13.
8
Phase-amplitude coupling between interictal high-frequency activity and slow waves in epilepsy surgery.
Epilepsia. 2018 Oct;59(10):1954-1965. doi: 10.1111/epi.14544. Epub 2018 Aug 26.
9
Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy.
Epilepsia. 2012 Sep;53(9):1607-17. doi: 10.1111/j.1528-1167.2012.03629.x. Epub 2012 Aug 20.
10
How to establish causality in epilepsy surgery.
Brain Dev. 2013 Sep;35(8):706-20. doi: 10.1016/j.braindev.2013.04.004. Epub 2013 May 15.

引用本文的文献

1
Noninvasive classification of physiological and pathological high frequency oscillations in children.
Brain Commun. 2025 May 2;7(3):fcaf170. doi: 10.1093/braincomms/fcaf170. eCollection 2025.
2
Spikes on ripples are better interictal biomarkers of epilepsy than spikes or ripples.
Brain Commun. 2025 Feb 8;7(1):fcaf056. doi: 10.1093/braincomms/fcaf056. eCollection 2025.
3
The high frequency oscillations in the amygdala, hippocampus, and temporal cortex during mesial temporal lobe epilepsy.
Cogn Neurodyn. 2024 Aug;18(4):1627-1639. doi: 10.1007/s11571-023-10059-9. Epub 2024 Jan 20.
5
Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist.
Curr Neurol Neurosci Rep. 2023 Dec;23(12):869-879. doi: 10.1007/s11910-023-01318-7. Epub 2023 Dec 7.
6
Pathological and Physiological High-frequency Oscillations on Electroencephalography in Patients with Epilepsy.
Neurosci Bull. 2024 May;40(5):609-620. doi: 10.1007/s12264-023-01150-6. Epub 2023 Nov 24.
7
Association between Removal of High-Frequency Oscillations and the Effect of Epilepsy Surgery: A Meta-Analysis.
J Neurol Surg A Cent Eur Neurosurg. 2024 May;85(3):294-301. doi: 10.1055/a-2202-9344. Epub 2023 Nov 2.
9
Cross-Frequency Coupling and Intelligent Neuromodulation.
Cyborg Bionic Syst. 2023 May 31;4:0034. doi: 10.34133/cbsystems.0034. eCollection 2023.
10
Epileptogenic high-frequency oscillations present larger amplitude both in mesial temporal and neocortical regions.
Front Hum Neurosci. 2022 Sep 29;16:984306. doi: 10.3389/fnhum.2022.984306. eCollection 2022.

本文引用的文献

1
Laminar analysis of slow wave activity in humans.
Brain. 2010 Sep;133(9):2814-29. doi: 10.1093/brain/awq169. Epub 2010 Jul 23.
2
High-frequency changes during interictal spikes detected by time-frequency analysis.
Clin Neurophysiol. 2011 Jan;122(1):32-42. doi: 10.1016/j.clinph.2010.05.033. Epub 2010 Jul 6.
3
Large-scale microelectrode recordings of high-frequency gamma oscillations in human cortex during sleep.
J Neurosci. 2010 Jun 9;30(23):7770-82. doi: 10.1523/JNEUROSCI.5049-09.2010.
4
High frequency oscillations: the new EEG frontier?
Epilepsia. 2010 Feb;51 Suppl 1(Suppl 1):63-5. doi: 10.1111/j.1528-1167.2009.02449.x.
6
High-frequency oscillations in epileptic brain.
Curr Opin Neurol. 2010 Apr;23(2):151-6. doi: 10.1097/WCO.0b013e3283373ac8.
8
Somatosensory-related gamma-, beta- and alpha-augmentation precedes alpha- and beta-attenuation in humans.
Clin Neurophysiol. 2010 Mar;121(3):366-75. doi: 10.1016/j.clinph.2009.10.036. Epub 2010 Jan 13.
10
Advances in visual perceptual learning and plasticity.
Nat Rev Neurosci. 2010 Jan;11(1):53-60. doi: 10.1038/nrn2737. Epub 2009 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验