Suppr超能文献

蛋白酶体加工速率对底物展开的依赖性。

Dependence of proteasome processing rate on substrate unfolding.

机构信息

Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California 94127, USA.

出版信息

J Biol Chem. 2011 May 20;286(20):17495-502. doi: 10.1074/jbc.M110.212027. Epub 2011 Mar 28.

Abstract

Protein degradation by eukaryotic proteasomes is a multi-step process involving substrate recognition, ATP-dependent unfolding, translocation into the proteolytic core particle, and finally proteolysis. To date, most investigations of proteasome function have focused on the first and the last steps in this process. Here we examine the relationship between the stability of a folded protein domain and its degradation rate. Test proteins were targeted to the proteasome independently of ubiquitination by directly tethering them to the protease. Degradation kinetics were compared for test protein pairs whose stability was altered by either point mutation or ligand binding, but were otherwise identical. In both intact cells and in reactions using purified proteasomes and substrates, increased substrate stability led to an increase in substrate turnover time. The steady-state time for degradation ranged from ∼5 min (dihydrofolate reductase) to 40 min (I27 domain of titin). ATP turnover was 110/min./proteasome, and was not markedly changed by substrate. Proteasomes engage tightly folded substrates in multiple iterative rounds of ATP hydrolysis, a process that can be rate-limiting for degradation.

摘要

真核蛋白酶体中的蛋白质降解是一个多步骤的过程,涉及底物识别、ATP 依赖性展开、转运到蛋白酶核心颗粒,最后进行蛋白水解。迄今为止,对蛋白酶体功能的大多数研究都集中在这个过程的第一和最后一步。在这里,我们研究了折叠蛋白结构域的稳定性与其降解速率之间的关系。通过直接将测试蛋白与蛋白酶连接,使它们独立于泛素化靶向蛋白酶体。比较了通过点突变或配体结合改变稳定性的测试蛋白对的降解动力学,但其他方面完全相同。在完整细胞中和使用纯化的蛋白酶体和底物的反应中,增加底物稳定性导致底物周转时间增加。降解的稳定状态时间范围从约 5 分钟(二氢叶酸还原酶)到 40 分钟(titin 的 I27 结构域)。ATP 周转率为每蛋白酶体 110/分钟,并且不受底物的明显影响。蛋白酶体使紧密折叠的底物多次参与 ATP 水解的迭代循环,这个过程可能是降解的限速步骤。

相似文献

1
Dependence of proteasome processing rate on substrate unfolding.
J Biol Chem. 2011 May 20;286(20):17495-502. doi: 10.1074/jbc.M110.212027. Epub 2011 Mar 28.
2
The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome.
J Biol Chem. 2013 Oct 4;288(40):29215-22. doi: 10.1074/jbc.M113.482570. Epub 2013 Aug 21.
3
Conformational switching of the 26S proteasome enables substrate degradation.
Nat Struct Mol Biol. 2013 Jul;20(7):781-8. doi: 10.1038/nsmb.2616. Epub 2013 Jun 16.
4
Mode of targeting to the proteasome determines GFP fate.
J Biol Chem. 2020 Nov 20;295(47):15892-15901. doi: 10.1074/jbc.RA120.015235. Epub 2020 Sep 10.
5
The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome.
J Biol Chem. 2013 Oct 11;288(41):29467-81. doi: 10.1074/jbc.M113.491662. Epub 2013 Aug 30.
7
An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.
Mol Cell. 2017 Sep 7;67(5):799-811.e8. doi: 10.1016/j.molcel.2017.07.023. Epub 2017 Aug 24.
9
Catalytically Active Proteasomes Function Predominantly in the Cytosol.
J Biol Chem. 2016 Sep 2;291(36):18765-77. doi: 10.1074/jbc.M115.712406. Epub 2016 Jul 14.
10
The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation.
Cell. 2019 Apr 4;177(2):286-298.e15. doi: 10.1016/j.cell.2019.02.031. Epub 2019 Mar 28.

引用本文的文献

1
The known unknowns of the Hsp90 chaperone.
Elife. 2024 Dec 31;13:e102666. doi: 10.7554/eLife.102666.
2
Protein degradation kinetics measured by microinjection and live-cell fluorescence microscopy.
Sci Rep. 2024 Nov 7;14(1):27153. doi: 10.1038/s41598-024-76224-0.
3
Substrate-specific effects of natural genetic variation on proteasome activity.
PLoS Genet. 2023 May 1;19(5):e1010734. doi: 10.1371/journal.pgen.1010734. eCollection 2023 May.
4
Single molecule microscopy reveals diverse actions of substrate sequences that impair ClpX AAA+ ATPase function.
J Biol Chem. 2022 Oct;298(10):102457. doi: 10.1016/j.jbc.2022.102457. Epub 2022 Sep 5.
5
Functional Differences between Proteasome Subtypes.
Cells. 2022 Jan 26;11(3):421. doi: 10.3390/cells11030421.
6
Degradation of Intrinsically Disordered Proteins by the NADH 26S Proteasome.
Biomolecules. 2020 Dec 7;10(12):1642. doi: 10.3390/biom10121642.
7
Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins.
Sci Rep. 2020 Sep 25;10(1):15765. doi: 10.1038/s41598-020-71550-5.
8
Mode of targeting to the proteasome determines GFP fate.
J Biol Chem. 2020 Nov 20;295(47):15892-15901. doi: 10.1074/jbc.RA120.015235. Epub 2020 Sep 10.
10
A Practical Review of Proteasome Pharmacology.
Pharmacol Rev. 2019 Apr;71(2):170-197. doi: 10.1124/pr.117.015370.

本文引用的文献

2
Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease.
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19340-5. doi: 10.1073/pnas.0910484106. Epub 2009 Nov 5.
4
Recognition and processing of ubiquitin-protein conjugates by the proteasome.
Annu Rev Biochem. 2009;78:477-513. doi: 10.1146/annurev.biochem.78.081507.101607.
5
ATP-dependent proteases differ substantially in their ability to unfold globular proteins.
J Biol Chem. 2009 Jul 10;284(28):18674-84. doi: 10.1074/jbc.M900783200. Epub 2009 Apr 21.
7
Engineering proteins with tailored nanomechanical properties: a single molecule approach.
Org Biomol Chem. 2007 Nov 7;5(21):3399-406. doi: 10.1039/b710321m. Epub 2007 Sep 21.
8
Proteasome substrate degradation requires association plus extended peptide.
EMBO J. 2007 Jan 10;26(1):123-31. doi: 10.1038/sj.emboj.7601476. Epub 2006 Dec 7.
9
Glycine-alanine repeats impair proper substrate unfolding by the proteasome.
EMBO J. 2006 Apr 19;25(8):1720-9. doi: 10.1038/sj.emboj.7601058. Epub 2006 Apr 6.
10
Characterization of the proteasome using native gel electrophoresis.
Methods Enzymol. 2005;398:353-63. doi: 10.1016/S0076-6879(05)98029-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验