From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.
J Biol Chem. 2013 Oct 4;288(40):29215-22. doi: 10.1074/jbc.M113.482570. Epub 2013 Aug 21.
The degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis. To investigate if the six proteasomal ATPases function independently or in a cyclic manner, as proposed recently, we used yeast mutants that prevent ATP binding to Rpt3, Rpt5, or Rpt6. Although proteasomes contain six ATPase subunits, each of these single mutations caused a 66% reduction in basal ATP hydrolysis, and each blocked completely the 2-3-fold stimulation of ATPase activity induced by ubiquitinated substrates. Therefore, the ATPase subunits must function in a ordered manner, in which each is required for the stimulation of ATPase activity by substrates. Although ATP is essential for multiple steps in proteasome function, when the rate of ATP hydrolysis was reduced incrementally, the degradation of Ub5-DHFR (where Ub is ubiquitin and DHFR is dihydrofolate reductase) decreased exactly in parallel. This direct proportionality implies that a specific number of ATPs is consumed in degrading a ubiquitinated protein. When the ubiquitinated DHFR was more tightly folded (upon addition of the ligand folate), the rate of ATP hydrolysis was unchanged, but the time to degrade a Ub5-DHFR molecule (∼13 s) and the energy expenditure (50-80 ATPs/Ub5-DHFR) both increased by 2-fold. With a mutation in the ATPase C terminus that reduced gate opening into the 20 S proteasome, the energy costs and time required for conjugate degradation also increased. Thus, different ubiquitin conjugates activate similarly the ATPase subunit cycle that drives proteolysis, but polypeptide structure determines the time required for degradation and thus the energy cost.
26S 蛋白酶体降解泛素化蛋白需要 ATP 水解。为了研究六个蛋白酶体 ATP 酶是否独立或循环发挥作用,就像最近提出的那样,我们使用酵母突变体阻止 Rpt3、Rpt5 或 Rpt6 与 ATP 结合。尽管蛋白酶体含有六个 ATPase 亚基,但这些单一突变中的每一种都会导致基础 ATP 水解减少 66%,并且每种突变都会完全阻断泛素化底物诱导的 ATPase 活性增加 2-3 倍。因此,ATPase 亚基必须以有序的方式发挥作用,其中每个亚基都需要底物刺激 ATPase 活性。尽管 ATP 对蛋白酶体功能的多个步骤都是必不可少的,但当 ATP 水解速率逐渐降低时,Ub5-DHFR(其中 Ub 是泛素,DHFR 是二氢叶酸还原酶)的降解也正好成比例地减少。这种直接的比例关系意味着降解一个泛素化蛋白需要消耗特定数量的 ATP。当泛素化的 DHFR 折叠更紧密(加入配体叶酸时),ATP 水解速率不变,但降解一个 Ub5-DHFR 分子的时间(约 13 秒)和能量消耗(50-80 个 ATP/Ub5-DHFR)都增加了两倍。在 ATP 酶 C 端的突变降低了进入 20S 蛋白酶体的门控开放时,共轭降解的能量成本和所需时间也增加了。因此,不同的泛素化缀合物以类似的方式激活驱动蛋白水解的 ATPase 亚基循环,但多肽结构决定了降解所需的时间,从而决定了能量成本。