Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4111-6. doi: 10.1073/pnas.0911208107. Epub 2010 Feb 16.
Kinesin cytoskeletal motors convert the energy of ATP hydrolysis into stepping movement along microtubules. A partial model of this process has been derived from crystal structures, which show that movement of the motor domain relative to its major microtubule binding element, the switch II helix, is coupled to docking of kinesin's neck linker element along the motor domain. This docking would displace the cargo in the direction of travel and so contribute to a step. However, the crystal structures do not reveal how ATP binding and hydrolysis govern this series of events. We used cryoelectron microscopy to derive 8-9 A-resolution maps of four nucleotide states encompassing the microtubule-attached kinetic cycle of a kinesin motor. The exceptionally high quality of these maps allowed us to build in crystallographically determined conformations of kinesin's key subcomponents, yielding novel arrangements of kinesin's switch II helix and nucleotide-sensing switch loops. The resulting atomic models reveal a seesaw mechanism in which the switch loops, triggered by ATP binding, propel their side of the motor domain down and thereby elicit docking of the neck linker on the opposite side of the seesaw. Microtubules engage the seesaw mechanism by stabilizing the formation of extra turns at the N terminus of the switch II helix, which then serve as an anchor for the switch loops as they modulate the seesaw angle. These observations explain how microtubules activate kinesin's ATP-sensing machinery to promote cargo displacement and inform the mechanism of kinesin's ancestral relative, myosin.
驱动蛋白细胞骨架马达将 ATP 水解的能量转化为沿微管的步进运动。这个过程的部分模型是从晶体结构中推导出来的,晶体结构显示,马达结构域相对于其主要的微管结合元件——开关 II 螺旋的运动与驱动蛋白颈部连接元件在马达结构域上的对接相耦合。这种对接会将货物推向运动方向,从而有助于完成一个步长。然而,晶体结构并没有揭示 ATP 结合和水解如何控制这一系列事件。我们使用低温电子显微镜获得了涵盖驱动蛋白马达与微管结合的动力学循环的四个核苷酸状态的 8-9Å 分辨率图谱。这些图谱的质量非常高,我们可以在其中构建驱动蛋白关键亚基的晶体学确定构象,从而产生驱动蛋白开关 II 螺旋和核苷酸感应开关环的新颖排列。由此产生的原子模型揭示了一种跷跷板机制,其中开关环在 ATP 结合的触发下,将其所在的马达结构域向下推动,从而引起颈部连接元件在跷跷板的另一侧对接。微管通过稳定开关 II 螺旋 N 端额外环的形成来参与跷跷板机制,然后这些额外环作为开关环的锚点,调节跷跷板角度。这些观察结果解释了微管如何激活驱动蛋白的 ATP 感应机制以促进货物位移,并为驱动蛋白的远古同源物肌球蛋白的机制提供了信息。