Suppr超能文献

鼬科亚科的系统发育:十七个核非编码基因座和线粒体全基因组分析。

On the phylogeny of Mustelidae subfamilies: analysis of seventeen nuclear non-coding loci and mitochondrial complete genomes.

机构信息

Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, PR, China.

出版信息

BMC Evol Biol. 2011 Apr 10;11:92. doi: 10.1186/1471-2148-11-92.

Abstract

BACKGROUND

Mustelidae, as the largest and most-diverse family of order Carnivora, comprises eight subfamilies. Phylogenetic relationships among these Mustelidae subfamilies remain argumentative subjects in recent years. One of the main reasons is that the mustelids represent a typical example of rapid evolutionary radiation and recent speciation event. Prior investigation has been concentrated on the application of different mitochondrial (mt) sequence and nuclear protein-coding data, herein we employ 17 nuclear non-coding loci (>15 kb), in conjunction with mt complete genome data (>16 kb), to clarify these enigmatic problems.

RESULTS

The combined nuclear intron and mt genome analyses both robustly support that Taxidiinae diverged first, followed by Melinae. Lutrinae and Mustelinae are grouped together in all analyses with strong supports. The position of Helictidinae, however, is enigmatic because the mt genome analysis places it to the clade uniting Lutrinae and Mustelinae, whereas the nuclear intron analysis favors a novel view supporting a closer relationship of Helictidinae to Martinae. This finding emphasizes a need to add more data and include more taxa to resolve this problem. In addition, the molecular dating provides insights into the time scale of the origin and diversification of the Mustelidae subfamilies. Finally, the phylogenetic performances and limits of nuclear introns and mt genes are discussed in the context of Mustelidae phylogeny.

CONCLUSION

Our study not only brings new perspectives on the previously obscured phylogenetic relationships among Mustelidae subfamilies, but also provides another example demonstrating the effectiveness of nuclear non-coding loci for reconstructing evolutionary histories in a group that has undergone rapid bursts of speciation.

摘要

背景

鼬科是食肉目最大、最多样化的科,包括 8 个亚科。近年来,鼬科亚科之间的系统发育关系仍是争议的主题。其中一个主要原因是鼬科是快速进化辐射和近期物种形成事件的典型代表。先前的研究主要集中在不同的线粒体(mt)序列和核蛋白编码数据的应用上,在这里我们采用了 17 个核非编码基因座(>15kb),结合 mt 完整基因组数据(>16kb),以阐明这些神秘的问题。

结果

联合核内含子和 mt 基因组分析都强有力地支持了獾亚科首先分化,其次是貂亚科。所有分析都将水獭亚科和鼬亚科聚在一起,支持力度很强。獾亚科的位置则很神秘,因为 mt 基因组分析将其置于与水獭亚科和鼬亚科联合的分支上,而核内含子分析则支持一个新颖的观点,即獾亚科与貂亚科关系更密切。这一发现强调需要增加更多的数据并纳入更多的分类单元来解决这个问题。此外,分子定年为鼬科亚科的起源和多样化时间尺度提供了新的视角。最后,在鼬科的系统发育中讨论了核内含子和 mt 基因的系统发育表现和局限性。

结论

我们的研究不仅为鼬科亚科之间以前模糊的系统发育关系带来了新的视角,而且还提供了另一个例子,证明了核非编码基因座在重建经历快速物种形成爆发的群体进化历史方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cc9/3088541/ba50176ef438/1471-2148-11-92-1.jpg

相似文献

3
Molecular phylogenetic study on the origin and evolution of Mustelidae.
Gene. 2007 Jul 1;396(1):1-12. doi: 10.1016/j.gene.2006.12.040. Epub 2007 Feb 12.
5
Endogenous lentiviral elements in the weasel family (Mustelidae).
Mol Biol Evol. 2012 Oct;29(10):2905-8. doi: 10.1093/molbev/mss126. Epub 2012 Apr 20.
9
Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora).
Syst Biol. 2011 Mar;60(2):175-87. doi: 10.1093/sysbio/syq090. Epub 2011 Jan 20.
10
Phylogenetic analysis of the Mustela altaica (Carnivora: Mustelidae) based on complete mitochondrial genome.
Mitochondrial DNA. 2014 Aug;25(4):255-6. doi: 10.3109/19401736.2013.800491. Epub 2013 Jun 24.

引用本文的文献

2
Revalidation and expanded description of (Mustelidae: Carnivora) based on a multigene phylogeny and morphology.
Ecol Evol. 2023 Apr 18;13(4):e9944. doi: 10.1002/ece3.9944. eCollection 2023 Apr.
3
A chromosome-level genome assembly of the yellow-throated marten (Martes flavigula).
Sci Data. 2023 Apr 17;10(1):216. doi: 10.1038/s41597-023-02120-3.
4
First complete mitochondrial genome of the Saharan striped polecat ().
Mitochondrial DNA B Resour. 2022 Nov 12;7(11):1957-1960. doi: 10.1080/23802359.2022.2141080. eCollection 2022.
6
Evolutionary status of the invasive American mink revealed by complete mitochondrial genome.
Mitochondrial DNA B Resour. 2016 Feb 1;1(1):6-7. doi: 10.1080/23802359.2015.1137794.
7
Complete mitochondrial genome of (Carnivora: Mustelidae), a protected and endangered species in China.
Mitochondrial DNA B Resour. 2020 Feb 7;5(1):1081-1083. doi: 10.1080/23802359.2020.1723447.
8
First Draft Genome of the Sable, Martes zibellina.
Genome Biol Evol. 2020 Mar 1;12(3):59-65. doi: 10.1093/gbe/evaa029.
9
Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter.
Mol Biol Evol. 2019 Dec 1;36(12):2631-2655. doi: 10.1093/molbev/msz101.

本文引用的文献

2
INFERRING PHYLOGENIES FROM mtDNA VARIATION: MITOCHONDRIAL-GENE TREES VERSUS NUCLEAR-GENE TREES.
Evolution. 1995 Aug;49(4):718-726. doi: 10.1111/j.1558-5646.1995.tb02308.x.
3
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
4
Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora).
Syst Biol. 2011 Mar;60(2):175-87. doi: 10.1093/sysbio/syq090. Epub 2011 Jan 20.
5
Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences.
Mol Phylogenet Evol. 2010 Jul;56(1):49-63. doi: 10.1016/j.ympev.2010.01.033. Epub 2010 Feb 4.
6
Deciphering and dating the red panda's ancestry and early adaptive radiation of Musteloidea.
Mol Phylogenet Evol. 2009 Dec;53(3):907-22. doi: 10.1016/j.ympev.2009.08.019. Epub 2009 Aug 21.
7
Neogastropod phylogenetic relationships based on entire mitochondrial genomes.
BMC Evol Biol. 2009 Aug 23;9:210. doi: 10.1186/1471-2148-9-210.
9
Choosing and using introns in molecular phylogenetics.
Evol Bioinform Online. 2007 Jun 14;3:99-108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验