Suppr超能文献

超越无规线团:无序蛋白质中的随机构象转变。

Beyond the random coil: stochastic conformational switching in intrinsically disordered proteins.

机构信息

Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

Structure. 2011 Apr 13;19(4):566-76. doi: 10.1016/j.str.2011.01.011.

Abstract

Intrinsically disordered proteins (IDPs) participate in critical cellular functions that exploit the flexibility and rapid conformational fluctuations of their native state. Limited information about the native state of IDPs can be gained by the averaging over many heterogeneous molecules that is unavoidable in ensemble approaches. We used single molecule fluorescence to characterize native state conformational dynamics in five synaptic proteins confirmed to be disordered by other techniques. For three of the proteins, SNAP-25, synaptobrevin and complexin, their conformational dynamics could be described with a simple semiflexible polymer model. Surprisingly, two proteins, neuroligin and the NMDAR-2B glutamate receptor, were observed to stochastically switch among distinct conformational states despite the fact that they appeared intrinsically disordered by other measures. The hop-like intramolecular diffusion found in these proteins is suggested to define a class of functionality previously unrecognized for IDPs.

摘要

无规卷曲蛋白质(IDPs)参与关键的细胞功能,利用其天然状态的灵活性和快速构象波动。在集合方法中,不可避免地需要对许多异构分子进行平均化,从而限制了对 IDPs 天然状态的了解。我们使用单分子荧光技术来描述通过其他技术证实为无序的五种突触蛋白的天然状态构象动力学。对于三种蛋白质,SNAP-25、突触融合蛋白和复合蛋白,可以用简单的半柔性聚合物模型来描述它们的构象动力学。令人惊讶的是,尽管通过其他方法发现两种蛋白质,神经连接蛋白和 NMDAR-2B 谷氨酸受体,表现出随机地在不同构象状态之间切换,但它们似乎是无规卷曲的。在这些蛋白质中发现的类 hopping 分子内扩散被认为定义了一类以前未被 IDPs 识别的功能。

相似文献

1
Beyond the random coil: stochastic conformational switching in intrinsically disordered proteins.
Structure. 2011 Apr 13;19(4):566-76. doi: 10.1016/j.str.2011.01.011.
3
Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex.
Biophys J. 2005 Jul;89(1):690-702. doi: 10.1529/biophysj.104.054064. Epub 2005 Apr 8.
5
Single-molecule fluorescence studies of intrinsically disordered proteins.
Methods Enzymol. 2010;472:179-204. doi: 10.1016/S0076-6879(10)72010-3.
6
Scale-free Spatio-temporal Correlations in Conformational Fluctuations of Intrinsically Disordered Proteins.
Adv Sci (Weinh). 2025 Mar;12(9):e2412989. doi: 10.1002/advs.202412989. Epub 2025 Jan 14.
7
A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion.
Nat Struct Mol Biol. 2011 Jul 24;18(8):934-40. doi: 10.1038/nsmb.2103.
8
Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis.
J Biol Chem. 2002 Mar 8;277(10):7838-48. doi: 10.1074/jbc.M109507200. Epub 2001 Dec 20.
9
From the Cover: Charge interactions can dominate the dimensions of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14609-14. doi: 10.1073/pnas.1001743107. Epub 2010 Jul 16.
10
Spontaneous Switching among Conformational Ensembles in Intrinsically Disordered Proteins.
Biomolecules. 2019 Mar 22;9(3):114. doi: 10.3390/biom9030114.

引用本文的文献

1
Intermediate steps in the formation of neuronal SNARE complexes.
J Biol Chem. 2024 Aug;300(8):107591. doi: 10.1016/j.jbc.2024.107591. Epub 2024 Jul 19.
2
Hydrodynamic Radii of Intrinsically Disordered Proteins: Fast Prediction by Minimum Dissipation Approximation and Experimental Validation.
J Phys Chem Lett. 2024 May 16;15(19):5024-5033. doi: 10.1021/acs.jpclett.4c00312. Epub 2024 May 2.
3
Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma.
Biophys Rev (Melville). 2022 Mar 17;3(1):011306. doi: 10.1063/5.0080512. eCollection 2022 Mar.
4
Diversity of hydrodynamic radii of intrinsically disordered proteins.
Eur Biophys J. 2023 Oct;52(6-7):607-618. doi: 10.1007/s00249-023-01683-8. Epub 2023 Oct 13.
5
The Axin scaffold protects the kinase GSK3β from cross-pathway inhibition.
Elife. 2023 Aug 7;12:e85444. doi: 10.7554/eLife.85444.
6
The ins and outs of membrane bending by intrinsically disordered proteins.
Sci Adv. 2023 Jul 7;9(27):eadg3485. doi: 10.1126/sciadv.adg3485.
7
Visualizing the disordered nuclear transport machinery in situ.
Nature. 2023 May;617(7959):162-169. doi: 10.1038/s41586-023-05990-0. Epub 2023 Apr 26.
9
Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology.
Biomolecules. 2023 Jan 7;13(1):124. doi: 10.3390/biom13010124.

本文引用的文献

1
Glutamate receptor ion channels: structure, regulation, and function.
Pharmacol Rev. 2010 Sep;62(3):405-96. doi: 10.1124/pr.109.002451.
2
Optimizing methods to recover absolute FRET efficiency from immobilized single molecules.
Biophys J. 2010 Aug 4;99(3):961-70. doi: 10.1016/j.bpj.2010.04.063.
3
From the Cover: Charge interactions can dominate the dimensions of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14609-14. doi: 10.1073/pnas.1001743107. Epub 2010 Jul 16.
4
Sequence determinants of compaction in intrinsically disordered proteins.
Biophys J. 2010 May 19;98(10):2383-90. doi: 10.1016/j.bpj.2010.02.006.
5
Net charge per residue modulates conformational ensembles of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8183-8. doi: 10.1073/pnas.0911107107. Epub 2010 Apr 19.
7
Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes.
Biochemistry. 2010 Apr 13;49(14):3174-90. doi: 10.1021/bi901871u.
8
Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex.
Nat Struct Mol Biol. 2010 Mar;17(3):318-24. doi: 10.1038/nsmb.1763. Epub 2010 Feb 21.
9
Detecting the conformation of individual proteins in live cells.
Nat Methods. 2010 Mar;7(3):203-5. doi: 10.1038/nmeth.1421. Epub 2010 Jan 31.
10
Understanding protein non-folding.
Biochim Biophys Acta. 2010 Jun;1804(6):1231-64. doi: 10.1016/j.bbapap.2010.01.017. Epub 2010 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验