Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain.
Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):11891-11900. doi: 10.1021/acsami.0c21932. Epub 2021 Mar 3.
The decrease of greenhouse gases such as CO has become a key challenge for the human kind and the study of the electrocatalytic properties of CO-reducing enzymes such as formate dehydrogenases is of importance for this goal. In this work, we study the covalent bonding of Hildenborough FdhAB formate dehydrogenase to chemically modified gold and low-density graphite electrodes, using electrostatic interactions for favoring oriented immobilization of the enzyme. Electrochemical measurements show both bioelectrocatalytic oxidation of formate and reduction of CO by direct electron transfer (DET). Atomic force microscopy and quartz crystal microbalance characterization, as well as a comparison of direct and mediated electrocatalysis, suggest that a compact layer of formate dehydrogenase was anchored to the electrode surface with some crosslinked aggregates. Furthermore, the operational stability for CO electroreduction to formate by DET is shown with approximately 100% Faradaic yield.
温室气体(如 CO)的减少已成为人类面临的一项重大挑战,而对甲酸脱氢酶等 CO 还原酶的电催化性能的研究对实现这一目标具有重要意义。在这项工作中,我们使用静电相互作用来促进酶的定向固定,研究了 Hildenborough FdhAB 甲酸脱氢酶与化学修饰的金和低密度石墨电极的共价键合。电化学测量表明甲酸的生物电化学氧化和 CO 通过直接电子转移(DET)的还原。原子力显微镜和石英晶体微天平的表征,以及直接和介导电催化的比较表明,甲酸脱氢酶的致密层通过交联聚集体固定在电极表面。此外,通过 DET 进行 CO 电还原为甲酸的操作稳定性显示出约 100%的法拉第产率。