Department of Physics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
Science. 2011 Apr 15;332(6027):333-6. doi: 10.1126/science.1202817.
A molecule or larger body is chiral if it cannot be superimposed on its mirror image (enantiomer). Electromagnetic fields may be chiral, too, with circularly polarized light (CPL) as the paradigmatic example. A recently introduced measure of the local degree of chiral dissymmetry in electromagnetic fields suggested the existence of optical modes more selective than circularly polarized plane waves in preferentially exciting single enantiomers in certain regions of space. By probing induced fluorescence intensity, we demonstrated experimentally an 11-fold enhancement over CPL in discrimination of the enantiomers of a biperylene derivative by precisely sculpted electromagnetic fields. This result, which agrees to within 15% with theoretical predictions, establishes that optical chirality is a fundamental and tunable property of light, with possible applications ranging from plasmonic sensors to absolute asymmetric synthesis.
如果一个分子或更大的物体不能与其镜像重合(对映体),那么它就是手性的。电磁场也可能是手性的,圆偏振光是其典范例子。最近引入的一种电磁场局部手性不对称度的度量方法表明,在某些空间区域中,存在比圆偏振平面波更具选择性的光学模式,能够优先激发单一对映体。通过探测诱导荧光强度,我们通过精确雕刻的电磁场实验证明,在手性二苯并芘衍生物对映体的分辨中,其增强效果比圆偏振光提高了 11 倍。该结果与理论预测的偏差在 15%以内,这表明光学手性是光的一种基本且可调谐的特性,其潜在应用范围从等离子体传感器到绝对不对称合成。