Suppr超能文献

骆驼科单域抗体可变区的分析与建模。

Analysis and modeling of the variable region of camelid single-domain antibodies.

机构信息

Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

J Immunol. 2011 Jun 1;186(11):6357-67. doi: 10.4049/jimmunol.1100116. Epub 2011 Apr 27.

Abstract

Camelids have a special type of Ab, known as heavy chain Abs, which are devoid of classical Ab light chains. Relative to classical Abs, camelid heavy chain Abs (cAbs) have comparable immunogenicity, Ag recognition diversity and binding affinities, higher stability and solubility, and better manufacturability, making them promising candidates for alternate therapeutic scaffolds. Rational engineering of cAbs to improve therapeutic function requires knowledge of the differences of sequence and structural features between cAbs and classical Abs. In this study, amino acid sequences of 27 cAb variable regions (V(H)H) were aligned with the respective regions of 54 classical Abs to detect amino acid differences, enabling automatic identification of cAb V(H)H CDRs. CDR analysis revealed that the H1 often (and sometimes the H2) adopts diverse conformations not classifiable by established canonical rules. Also, although the cAb H3 is much longer than classical H3 loops, it often contains common structural motifs and sometimes a disulfide bond to the H1. Leveraging these observations, we created a Monte Carlo-based cAb V(H)H structural modeling tool, where the CDR H1 and H2 loops exhibited a median root-mean-square deviation to natives of 3.1 and 1.5 Å, respectively. The protocol generated 8-12, 14-16, and 16-24 residue H3 loops with a median root-mean-square deviation to natives of 5.7, 4.5, and 6.8 Å, respectively. The large deviation of the predicted loops underscores the challenge in modeling such long loops. cAb V(H)H homology models can provide structural insights into interaction mechanisms to enable development of novel Abs for therapeutic and biotechnological use.

摘要

骆驼具有一种特殊的 Ab,称为重链 Abs,它缺乏经典的 Ab 轻链。与经典 Ab 相比,骆驼重链 Abs(cAb)具有相当的免疫原性、抗原识别多样性和结合亲和力、更高的稳定性和溶解度,以及更好的可制造性,使其成为有前途的替代治疗支架候选物。为了提高治疗功能,对 cAb 进行合理的工程改造需要了解 cAb 和经典 Ab 在序列和结构特征上的差异。在这项研究中,27 个 cAb 可变区(V(H)H)的氨基酸序列与 54 个经典 Ab 的相应区域进行了比对,以检测氨基酸差异,从而能够自动识别 cAb V(H)H CDR。CDR 分析表明,H1 经常(有时 H2)采用无法用既定规范规则分类的多样化构象。此外,尽管 cAb H3 比经典 H3 环长得多,但它通常包含常见的结构基序,有时还包含与 H1 的二硫键。利用这些观察结果,我们创建了一个基于蒙特卡罗的 cAb V(H)H 结构建模工具,其中 CDR H1 和 H2 环的均方根偏差中位数分别为 3.1 和 1.5 Å。该方案生成的 8-12、14-16 和 16-24 残基 H3 环的均方根偏差中位数分别为 5.7、4.5 和 6.8 Å。预测环的较大偏差突出了建模此类长环的挑战。cAb V(H)H 同源模型可以提供结构见解,以了解相互作用机制,从而开发用于治疗和生物技术用途的新型 Abs。

相似文献

1
Analysis and modeling of the variable region of camelid single-domain antibodies.
J Immunol. 2011 Jun 1;186(11):6357-67. doi: 10.4049/jimmunol.1100116. Epub 2011 Apr 27.
2
Global analysis of VHHs framework regions with a structural alphabet.
Biochimie. 2016 Dec;131:11-19. doi: 10.1016/j.biochi.2016.09.005. Epub 2016 Sep 6.
4
Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features.
Mol Immunol. 2000 Aug;37(10):579-90. doi: 10.1016/s0161-5890(00)00081-x.
6
Aggregation-resistant VHs selected by in vitro evolution tend to have disulfide-bonded loops and acidic isoelectric points.
Protein Eng Des Sel. 2009 Feb;22(2):59-66. doi: 10.1093/protein/gzn071. Epub 2008 Nov 24.
9
A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire.
J Immunol. 2010 May 15;184(10):5696-704. doi: 10.4049/jimmunol.0903722. Epub 2010 Apr 19.

引用本文的文献

1
Improved prediction of antibody and their complexes with clustered generative modelling ensembles.
Bioinform Adv. 2025 Jul 3;5(1):vbaf161. doi: 10.1093/bioadv/vbaf161. eCollection 2025.
3
PLAbDab-nano: a database of camelid and shark nanobodies from patents and literature.
Nucleic Acids Res. 2025 Jan 6;53(D1):D535-D542. doi: 10.1093/nar/gkae881.
4
Development of novel humanized VHH synthetic libraries based on physicochemical analyses.
Sci Rep. 2024 Aug 22;14(1):19533. doi: 10.1038/s41598-024-70513-4.
5
Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review.
Cancers (Basel). 2024 Jul 27;16(15):2681. doi: 10.3390/cancers16152681.
6
Single-cell 5' RNA sequencing of camelid peripheral B cells provides insights into cellular basis of heavy-chain antibody production.
Comput Struct Biotechnol J. 2024 Apr 16;23:1705-1714. doi: 10.1016/j.csbj.2024.04.041. eCollection 2024 Dec.
7
Structural trends in antibody-antigen binding interfaces: a computational analysis of 1833 experimentally determined 3D structures.
Comput Struct Biotechnol J. 2023 Dec 5;23:199-211. doi: 10.1016/j.csbj.2023.11.056. eCollection 2024 Dec.
9
VHH CDR-H3 conformation is determined by VH germline usage.
Commun Biol. 2023 Aug 19;6(1):864. doi: 10.1038/s42003-023-05241-y.
10
A comparison of the binding sites of antibodies and single-domain antibodies.
Front Immunol. 2023 Jul 18;14:1231623. doi: 10.3389/fimmu.2023.1231623. eCollection 2023.

本文引用的文献

1
OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding.
Protein Eng Des Sel. 2010 Nov;23(11):849-58. doi: 10.1093/protein/gzq061. Epub 2010 Sep 16.
3
New computational method for prediction of interacting protein loop regions.
Proteins. 2010 May 15;78(7):1748-59. doi: 10.1002/prot.22690.
5
Engineered CH2 domains (nanoantibodies).
MAbs. 2009 Jan-Feb;1(1):26-8. doi: 10.4161/mabs.1.1.7480.
6
FREAD revisited: Accurate loop structure prediction using a database search algorithm.
Proteins. 2010 May 1;78(6):1431-40. doi: 10.1002/prot.22658.
7
Computational design of affinity and specificity at protein-protein interfaces.
Curr Opin Struct Biol. 2009 Aug;19(4):458-63. doi: 10.1016/j.sbi.2009.07.005. Epub 2009 Jul 29.
9
RosettaAntibody: antibody variable region homology modeling server.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W474-9. doi: 10.1093/nar/gkp387. Epub 2009 May 20.
10
Outcome of a workshop on applications of protein models in biomedical research.
Structure. 2009 Feb 13;17(2):151-9. doi: 10.1016/j.str.2008.12.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验