文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

迈向人工叶绿体。

Towards a synthetic chloroplast.

机构信息

Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2011 Apr 20;6(4):e18877. doi: 10.1371/journal.pone.0018877.


DOI:10.1371/journal.pone.0018877
PMID:21533097
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3080389/
Abstract

BACKGROUND: The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner. RESULTS: We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages. CONCLUSION: Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

摘要

背景:真核细胞的进化被广泛认为是通过较大细胞与变形菌或蓝细菌之间的一系列内共生事件发生的,分别导致了线粒体或叶绿体的形成。不同物种细胞之间的工程内共生关系是合成生物学的一种有价值的工具,基于两种物种的工程途径可以利用每个互利伙伴的独特能力。

结果:我们探索了使用光合细菌集胞藻 PCC 7942 作为研究进化动态和设计两种生物合成系统的平台的可能性。我们观察到,与大肠杆菌相比,当将蓝细菌注射到斑马鱼、Danio rerio 的胚胎中或被哺乳动物巨噬细胞摄取时,蓝细菌对真核宿主细胞相对无害。此外,当用鼠疫耶尔森菌的侵袭蛋白和李斯特菌的李斯特菌素 O 进行工程改造后,集胞藻能够入侵培养的哺乳动物细胞并在巨噬细胞内分裂。

结论:我们的结果表明,可以对光合细菌进行工程改造使其入侵哺乳动物细胞的细胞质,以便在合成生物学中进行进一步的工程设计和应用。经过工程改造的入侵但非致病性或免疫原性的光合细菌具有作为合成生物学器件的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/b7c58a1409d6/pone.0018877.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/8211f504e88e/pone.0018877.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/58b0f931e421/pone.0018877.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/6e3cfb2f47ac/pone.0018877.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/c639beba646c/pone.0018877.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/8e32756803de/pone.0018877.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/b7c58a1409d6/pone.0018877.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/8211f504e88e/pone.0018877.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/58b0f931e421/pone.0018877.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/6e3cfb2f47ac/pone.0018877.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/c639beba646c/pone.0018877.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/8e32756803de/pone.0018877.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ca0/3080389/b7c58a1409d6/pone.0018877.g006.jpg

相似文献

[1]
Towards a synthetic chloroplast.

PLoS One. 2011-4-20

[2]
Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions.

J Biosci Bioeng. 2017-1

[3]
Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India.

Sci Rep. 2018-11-9

[4]
Engineering artificial photosynthetic life-forms through endosymbiosis.

Nat Commun. 2022-4-26

[5]
A Specific Single Nucleotide Polymorphism in the ATP Synthase Gene Significantly Improves Environmental Stress Tolerance of Synechococcus elongatus PCC 7942.

Appl Environ Microbiol. 2018-8-31

[6]
Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.

Plant Biotechnol J. 2016-8

[7]
A Library of Tunable, Portable, and Inducer-Free Promoters Derived from Cyanobacteria.

ACS Synth Biol. 2020-7-17

[8]
Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium UTEX 2973.

Proc Natl Acad Sci U S A. 2018-11-8

[9]
Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.

Metab Eng. 2016-12-18

[10]
Species-specific roles of sulfolipid metabolism in acclimation of photosynthetic microbes to sulfur-starvation stress.

PLoS One. 2017-10-12

引用本文的文献

[1]
Photosynthetic Solutions for Organ Perfusion Based on Microalgae and Cyanobacteria Display Differential and Features for Intravascular Oxygenation.

ACS Appl Bio Mater. 2025-8-18

[2]
Molecular and biochemical insights from natural and engineered photosynthetic endosymbiotic systems.

Curr Opin Chem Biol. 2025-8

[3]
Incorporation of photosynthetically active algal chloroplasts in cultured mammalian cells towards photosynthesis in animals.

Proc Jpn Acad Ser B Phys Biol Sci. 2024-11-11

[4]
Engineering signalling pathways in mammalian cells.

Nat Biomed Eng. 2024-12

[5]
Evolution and synthetic biology.

Curr Opin Microbiol. 2023-12

[6]
Synthetic symbiosis between a cyanobacterium and a ciliate toward novel chloroplast-like endosymbiosis.

Sci Rep. 2023-4-13

[7]
Engineering Endosymbiotic Growth of in Mammalian Cells.

ACS Synth Biol. 2022-10-21

[8]
Engineering artificial photosynthetic life-forms through endosymbiosis.

Nat Commun. 2022-4-26

[9]
Decoding and recoding plant development.

Plant Physiol. 2021-10-5

[10]
Toward synthetic life: Biomimetic synthetic cell communication.

Curr Opin Chem Biol. 2021-10

本文引用的文献

[1]
Intracellular invasion of green algae in a salamander host.

Proc Natl Acad Sci U S A. 2011-4-4

[2]
Dynamics in the mixed microbial concourse.

Genes Dev. 2010-12-1

[3]
Engineering the perfect (bacterial) cancer therapy.

Nat Rev Cancer. 2010-10-14

[4]
Emergent cooperation in microbial metabolism.

Mol Syst Biol. 2010-9-7

[5]
Engineering cyanobacteria to synthesize and export hydrophilic products.

Appl Environ Microbiol. 2010-4-2

[6]
The second wave of synthetic biology: from modules to systems.

Nat Rev Mol Cell Biol. 2009-6

[7]
Synthesis of methyl halides from biomass using engineered microbes.

J Am Chem Soc. 2009-5-13

[8]
Life on the inside: the intracellular lifestyle of cytosolic bacteria.

Nat Rev Microbiol. 2009-5

[9]
Snowdrift game dynamics and facultative cheating in yeast.

Nature. 2009-5-14

[10]
Engineering a synthetic dual-organism system for hydrogen production.

Appl Environ Microbiol. 2009-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索