Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, USA.
Osteoporos Int. 2012 Mar;23(3):1017-27. doi: 10.1007/s00198-011-1646-6. Epub 2011 May 12.
Absolute risk assessment is now the preferred approach to guide osteoporosis treatment decisions. Data collected passively during routine healthcare operations can be used to develop discriminative absolute risk assessment rules in male veterans. These rules could be used to develop computerized clinical decision support tools that might improve fracture prevention.
Absolute risk assessment is the preferred approach to guiding treatment decisions in osteoporosis. Current recommended risk stratification rules perform poorly in men, among whom osteoporosis is overlooked and undertreated. A potential solution lies in clinical decision support technology. The objective of this study was to determine whether data passively collected in routine healthcare operations could identify male veterans at highest risk with acceptable discrimination.
Using administrative and clinical databases for male veterans ≥50 years old who sought care in 2005-2006, we created risk stratification rules for hip and any major fracture. We identified variables related to known or theoretical risk factors and created prognostic models using Cox regression. We validated the rules and estimated optimism. We created risk scores from hazards ratios and used them to predict fractures with logistic regression.
The predictive models had C-statistics of 0.81 for hip and 0.74 for any major fracture, suggesting good to acceptable discrimination. For hip fracture, the cut-point that maximized percentage classified correctly (accuracy) predicted 165 of 227 hip fractures (73%) and missed 62 (27%). All hip fractures in patients with prior fracture were identified and 67% in patients without. For any major fracture, the maximal-accuracy cut-point predicted 611 of 987 (62%) and missed 376 (38%); the rule predicted all 134 fractures in patients with prior fracture and 56% in patients without.
Data collected passively in routine healthcare operations can identify male veterans at highest risk for fracture with discrimination that exceeds that reported for other methods applied in men.
绝对风险评估现在是指导骨质疏松症治疗决策的首选方法。在常规医疗保健操作过程中被动收集的数据可用于开发男性退伍军人的有鉴别力的绝对风险评估规则。这些规则可用于开发计算机化临床决策支持工具,可能有助于预防骨折。
绝对风险评估是指导骨质疏松症治疗决策的首选方法。目前推荐的风险分层规则在男性中的表现不佳,男性往往被忽视和治疗不足。潜在的解决方案在于临床决策支持技术。本研究的目的是确定在常规医疗保健操作中被动收集的数据是否可以识别出风险最高的男性退伍军人,并具有可接受的鉴别力。
使用 2005-2006 年就诊的≥50 岁男性退伍军人的行政和临床数据库,我们为髋部和任何主要骨折创建风险分层规则。我们确定了与已知或理论风险因素相关的变量,并使用 Cox 回归创建了预测模型。我们验证了规则并估计了乐观程度。我们从风险比创建风险评分,并使用逻辑回归预测骨折。
预测模型的髋部 C 统计量为 0.81,任何主要骨折的 C 统计量为 0.74,表明具有良好到可接受的鉴别力。对于髋部骨折,最大化正确分类百分比(准确性)的切点预测了 227 例髋部骨折中的 165 例(73%),漏诊了 62 例(27%)。所有有既往骨折的患者的髋部骨折均被识别,无既往骨折的患者中占 67%。对于任何主要骨折,最大准确性切点预测了 987 例中的 611 例(62%),漏诊了 376 例(38%);该规则预测了所有 134 例有既往骨折的患者的骨折,无既往骨折的患者中占 56%。
在常规医疗保健操作中被动收集的数据可以识别出风险最高的男性退伍军人,其鉴别力超过了其他应用于男性的方法。