Herd Seth A, O'Reilly Randall C, Hazy Tom E, Chatham Christopher H, Brant Angela M, Friedman Naomi P
Department of Psychology and Neuroscience, University of Colorado Boulder, 345 UCB, Boulder, CO 80309, USA.
Department of Psychology and Neuroscience, University of Colorado Boulder, 345 UCB, Boulder, CO 80309, USA; Institute for Behavioral Genetics, University of Colorado Boulder, 447 UCB, Boulder, CO 80309, USA.
Neuropsychologia. 2014 Sep;62:375-89. doi: 10.1016/j.neuropsychologia.2014.04.014. Epub 2014 Apr 30.
We use a biologically grounded neural network model to investigate the brain mechanisms underlying individual differences specific to the selection and instantiation of representations that exert cognitive control in task switching. Existing computational models of task switching do not focus on individual differences and so cannot explain why task switching abilities are separable from other executive function (EF) abilities (such as response inhibition). We explore hypotheses regarding neural mechanisms underlying the "Shifting-Specific" and "Common EF" components of EF proposed in the Unity/Diversity model (Miyake & Friedman, 2012) and similar components in related theoretical frameworks. We do so by adapting a well-developed neural network model of working memory (Prefrontal cortex, Basal ganglia Working Memory or PBWM; Hazy, Frank, & O'Reilly, 2007) to task switching and the Stroop task, and comparing its behavior on those tasks under a variety of individual difference manipulations. Results are consistent with the hypotheses that variation specific to task switching (i.e., Shifting-Specific) may be related to uncontrolled, automatic persistence of goal representations, whereas variation general to multiple EFs (i.e., Common EF) may be related to the strength of PFC representations and their effect on processing in the remainder of the cognitive system. Moreover, increasing signal to noise ratio in PFC, theoretically tied to levels of tonic dopamine and a genetic polymorphism in the COMT gene, reduced Stroop interference but increased switch costs. This stability-flexibility tradeoff provides an explanation for why these two EF components sometimes show opposing correlations with other variables such as attention problems and self-restraint.
我们使用一个基于生物学的神经网络模型来研究大脑机制,该机制是任务切换中发挥认知控制作用的表征选择和实例化所特有的个体差异的基础。现有的任务切换计算模型并未关注个体差异,因此无法解释为什么任务切换能力与其他执行功能(EF)能力(如反应抑制)是可分离的。我们探讨了关于统一/多样性模型(Miyake & Friedman,2012)中提出的EF的“特定于切换”和“通用EF”成分以及相关理论框架中类似成分的神经机制假设。我们通过将一个完善的工作记忆神经网络模型(前额叶皮层、基底神经节工作记忆或PBWM;Hazy、Frank和O'Reilly,2007)应用于任务切换和Stroop任务,并在各种个体差异操作下比较其在这些任务上的行为来进行研究。结果与以下假设一致:特定于任务切换的变异(即特定于切换)可能与目标表征不受控制的自动持续有关,而多个EF共有的变异(即通用EF)可能与前额叶皮层表征的强度及其对认知系统其余部分处理的影响有关。此外,理论上与多巴胺张力水平和COMT基因中的一个基因多态性相关的前额叶皮层信噪比增加,减少了Stroop干扰,但增加了切换成本。这种稳定性 - 灵活性权衡为为什么这两个EF成分有时与其他变量(如注意力问题和自我约束)呈现相反的相关性提供了解释。