Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.
ACS Nano. 2012 Aug 28;6(8):6767-75. doi: 10.1021/nn3014917. Epub 2012 Jul 11.
We report the use of an array of electrically gated ~200 nm solid-state pores as nanofluidic transistors to manipulate the capture and passage of DNA. The devices are capable of reversibly altering the rate of DNA capture by over 3 orders of magnitude using sub-1 V biasing of a gate electrode. This efficient gating originates from the counter-balance of electrophoresis and electroosmosis, as revealed by quantitative numerical simulations. Such a reversible electronically tunable biomolecular switch may be used to manipulate nucleic acid delivery in a fluidic circuit, and its development is an important first step toward active control of DNA motion through solid-state nanopores for sensing applications.
我们报告了使用电门控的约 200nm 固态孔阵列作为纳流晶体管来操纵 DNA 的捕获和通过。这些器件能够通过对栅极电极进行低于 1V 的偏置来将 DNA 的捕获速率可逆地改变 3 个数量级以上。这种高效的门控源于电泳和电渗流的平衡,这一点通过定量数值模拟得到了揭示。这种可电子调节的生物分子开关可用于在流体回路中操纵核酸的输送,其发展是朝着通过固态纳米孔对 DNA 运动进行主动控制以用于传感应用迈出的重要的第一步。