Suppr超能文献

纳米流体晶体管对 DNA 的捕获控制。

Control of DNA capture by nanofluidic transistors.

机构信息

Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

ACS Nano. 2012 Aug 28;6(8):6767-75. doi: 10.1021/nn3014917. Epub 2012 Jul 11.

Abstract

We report the use of an array of electrically gated ~200 nm solid-state pores as nanofluidic transistors to manipulate the capture and passage of DNA. The devices are capable of reversibly altering the rate of DNA capture by over 3 orders of magnitude using sub-1 V biasing of a gate electrode. This efficient gating originates from the counter-balance of electrophoresis and electroosmosis, as revealed by quantitative numerical simulations. Such a reversible electronically tunable biomolecular switch may be used to manipulate nucleic acid delivery in a fluidic circuit, and its development is an important first step toward active control of DNA motion through solid-state nanopores for sensing applications.

摘要

我们报告了使用电门控的约 200nm 固态孔阵列作为纳流晶体管来操纵 DNA 的捕获和通过。这些器件能够通过对栅极电极进行低于 1V 的偏置来将 DNA 的捕获速率可逆地改变 3 个数量级以上。这种高效的门控源于电泳和电渗流的平衡,这一点通过定量数值模拟得到了揭示。这种可电子调节的生物分子开关可用于在流体回路中操纵核酸的输送,其发展是朝着通过固态纳米孔对 DNA 运动进行主动控制以用于传感应用迈出的重要的第一步。

相似文献

1
Control of DNA capture by nanofluidic transistors.
ACS Nano. 2012 Aug 28;6(8):6767-75. doi: 10.1021/nn3014917. Epub 2012 Jul 11.
2
3
Nanofluidic channels fabrication and manipulation of DNA molecules.
IEE Proc Nanobiotechnol. 2006 Feb;153(1):11-5. doi: 10.1049/ip-nbt:20050044.
5
Selective trapping and manipulation of microscale objects using mobile microvortices.
Nano Lett. 2012 Jan 11;12(1):156-60. doi: 10.1021/nl2032487. Epub 2011 Dec 1.
6
Nanofluidic technology for biomolecule applications: a critical review.
Lab Chip. 2010 Apr 21;10(8):957-85. doi: 10.1039/b917759k. Epub 2010 Feb 23.
8
Identifying the mechanism of biosensing with carbon nanotube transistors.
Nano Lett. 2008 Feb;8(2):591-5. doi: 10.1021/nl072996i. Epub 2007 Dec 28.
9
Electrolyte pulse current measurements by CvMOS with microsecond and thermal voltage resolution.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1846-9. doi: 10.1109/IEMBS.2006.260209.
10
Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy.
Nano Lett. 2008 Jun;8(6):1729-35. doi: 10.1021/nl0808132. Epub 2008 May 20.

引用本文的文献

1
Detection of Ultra-Short KYCDE Peptides Using SiN Nanopores.
Electrophoresis. 2025 Mar 19. doi: 10.1002/elps.8122.
2
Modifying surface charge density of thermoplastic nanofluidic biosensors by multivalent cations within the slip plane of the electric double layer.
Colloids Surf A Physicochem Eng Asp. 2022 Sep 5;648. doi: 10.1016/j.colsurfa.2022.129147. Epub 2022 May 4.
4
SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping.
Nat Commun. 2019 Nov 22;10(1):5321. doi: 10.1038/s41467-019-13242-x.
5
Gated Single-Molecule Transport in Double-Barreled Nanopores.
ACS Appl Mater Interfaces. 2018 Nov 7;10(44):38621-38629. doi: 10.1021/acsami.8b13721. Epub 2018 Oct 25.
6
Water-Compression Gating of Nanopore Transport.
Phys Rev Lett. 2018 Jun 29;120(26):268101. doi: 10.1103/PhysRevLett.120.268101.
7
Electrokinetic ion transport in nanofluidics and membranes with applications in bioanalysis and beyond.
Biomicrofluidics. 2018 Apr 12;12(2):021502. doi: 10.1063/1.5022789. eCollection 2018 Mar.
8
Solid-state nanopore localization by controlled breakdown of selectively thinned membranes.
Nanotechnology. 2017 Feb 24;28(8):085304-85304. doi: 10.1088/1361-6528/aa564d. Epub 2017 Jan 3.
9
Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example.
Biophys J. 2016 Feb 2;110(3):600-611. doi: 10.1016/j.bpj.2015.12.027.
10
Slowing DNA Transport Using Graphene-DNA Interactions.
Adv Funct Mater. 2015 Feb 11;25(6):936-946. doi: 10.1002/adfm.201403719.

本文引用的文献

1
Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes.
ACS Nano. 2012 Jan 24;6(1):441-50. doi: 10.1021/nn203769e. Epub 2011 Dec 23.
2
Local electrical potential detection of DNA by nanowire-nanopore sensors.
Nat Nanotechnol. 2011 Dec 11;7(2):119-25. doi: 10.1038/nnano.2011.217.
3
Electric-field-induced wetting and dewetting in single hydrophobic nanopores.
Nat Nanotechnol. 2011 Oct 30;6(12):798-802. doi: 10.1038/nnano.2011.189.
4
Gate manipulation of DNA capture into nanopores.
ACS Nano. 2011 Oct 25;5(10):8391-7. doi: 10.1021/nn203186c. Epub 2011 Sep 26.
5
Nanopore sensors for nucleic acid analysis.
Nat Nanotechnol. 2011 Sep 18;6(10):615-24. doi: 10.1038/nnano.2011.129.
6
How to understand and interpret current flow in nanopore/electrode devices.
ACS Nano. 2011 Aug 23;5(8):6714-25. doi: 10.1021/nn202253z. Epub 2011 Aug 3.
7
Modeling the conductance and DNA blockade of solid-state nanopores.
Nanotechnology. 2011 Aug 5;22(31):315101. doi: 10.1088/0957-4484/22/31/315101. Epub 2011 Jul 6.
8
Single-molecule transport across an individual biomimetic nuclear pore complex.
Nat Nanotechnol. 2011 Jun 19;6(7):433-8. doi: 10.1038/nnano.2011.88.
9
Electrochemical protection of thin film electrodes in solid state nanopores.
Nanotechnology. 2011 Jul 8;22(27):275304. doi: 10.1088/0957-4484/22/27/275304. Epub 2011 May 20.
10
Controlling protein translocation through nanopores with bio-inspired fluid walls.
Nat Nanotechnol. 2011 Apr;6(4):253-60. doi: 10.1038/nnano.2011.12. Epub 2011 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验