Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
J Clin Invest. 2011 Jun;121(6):2181-96. doi: 10.1172/JCI44771. Epub 2011 May 23.
Diabetic nephropathy (DN) is among the most lethal complications that occur in type 1 and type 2 diabetics. Podocyte dysfunction is postulated to be a critical event associated with proteinuria and glomerulosclerosis in glomerular diseases including DN. However, molecular mechanisms of podocyte dysfunction in the development of DN are not well understood. Here we have shown that activity of mTOR complex 1 (mTORC1), a kinase that senses nutrient availability, was enhanced in the podocytes of diabetic animals. Further, podocyte-specific mTORC1 activation induced by ablation of an upstream negative regulator (PcKOTsc1) recapitulated many DN features, including podocyte loss, glomerular basement membrane thickening, mesangial expansion, and proteinuria in nondiabetic young and adult mice. Abnormal mTORC1 activation caused mislocalization of slit diaphragm proteins and induced an epithelial-mesenchymal transition-like phenotypic switch with enhanced ER stress in podocytes. Conversely, reduction of ER stress with a chemical chaperone significantly protected against both the podocyte phenotypic switch and podocyte loss in PcKOTsc1 mice. Finally, genetic reduction of podocyte-specific mTORC1 in diabetic animals suppressed the development of DN. These results indicate that mTORC1 activation in podocytes is a critical event in inducing DN and suggest that reduction of podocyte mTORC1 activity is a potential therapeutic strategy to prevent DN.
糖尿病肾病(DN)是 1 型和 2 型糖尿病患者最致命的并发症之一。足细胞功能障碍被认为是包括 DN 在内的肾小球疾病中与蛋白尿和肾小球硬化相关的关键事件。然而,DN 中足细胞功能障碍的分子机制尚不清楚。在这里,我们已经表明,作为一种感知营养可用性的激酶,mTOR 复合物 1(mTORC1)的活性在糖尿病动物的足细胞中增强。此外,通过消融上游负调节剂(PcKOTsc1)特异性激活足细胞中的 mTORC1 可重现许多 DN 特征,包括非糖尿病年轻和成年小鼠的足细胞丢失、肾小球基底膜增厚、系膜扩张和蛋白尿。异常的 mTORC1 激活导致裂孔隔膜蛋白的定位异常,并诱导足细胞中上皮-间充质转化样表型转换,并伴有内质网应激增强。相反,用化学伴侣减少内质网应激可显著防止 PcKOTsc1 小鼠中的足细胞表型转换和足细胞丢失。最后,在糖尿病动物中降低足细胞特异性 mTORC1 的遗传水平可抑制 DN 的发展。这些结果表明,足细胞中 mTORC1 的激活是诱导 DN 的一个关键事件,并表明降低足细胞 mTORC1 活性是预防 DN 的一种潜在治疗策略。