Suppr超能文献

国际奶牛基因组评估方法。

International genomic evaluation methods for dairy cattle.

机构信息

Animal Improvement Programs Laboratory, USDA, Building 5 BARC-West, Beltsville, MD 20705-2350, USA.

出版信息

Genet Sel Evol. 2010 Mar 1;42(1):7. doi: 10.1186/1297-9686-42-7.

Abstract

BACKGROUND

Genomic evaluations are rapidly replacing traditional evaluation systems used for dairy cattle selection. Higher reliabilities from larger genotype files promote cooperation across country borders. Genomic information can be exchanged across countries using simple conversion equations, by modifying multi-trait across-country evaluation (MACE) to account for correlated residuals originating from the use of foreign evaluations, or by multi-trait analysis of genotypes for countries that use the same reference animals.

METHODS

Traditional MACE assumes independent residuals because each daughter is measured in only one country. Genomic MACE could account for residual correlations using daughter equivalents from genomic data as a fraction of the total in each country and proportions of bulls shared. MACE methods developed to combine separate within-country genomic evaluations were compared to direct, multi-country analysis of combined genotypes using simulated genomic and phenotypic data for 8,193 bulls in nine countries.

RESULTS

Reliabilities for young bulls were much higher for across-country than within-country genomic evaluations as measured by squared correlations of estimated with true breeding values. Gains in reliability from genomic MACE were similar to those of multi-trait evaluation of genotypes but required less computation. Sharing of reference genotypes among countries created large residual correlations, especially for young bulls, that are accounted for in genomic MACE.

CONCLUSIONS

International genomic evaluations can be computed either by modifying MACE to account for residual correlations across countries or by multi-trait evaluation of combined genotype files. The gains in reliability justify the increased computation but require more cooperation than in previous breeding programs.

摘要

背景

基因组评估正在迅速取代用于奶牛选择的传统评估系统。来自更大基因型文件的更高可靠性促进了跨国界的合作。通过使用简单的转换方程在国家之间交换基因组信息,通过修改多性状跨国评估(MACE)以考虑使用外国评估产生的相关残差,或者通过对使用相同参考动物的国家进行基因型的多性状分析,可以在国家之间交换基因组信息。

方法

传统的 MACE 假设残差是独立的,因为每个女儿只在一个国家进行测量。基因组 MACE 可以使用来自基因组数据的女儿等效物来解释残差的相关性,这些等效物占每个国家总等效物的一部分和共享的公牛比例。为了结合单独的国内基因组评估而开发的 MACE 方法与使用 9 个国家的 8193 头公牛的模拟基因组和表型数据进行的直接多国综合基因型分析进行了比较。

结果

与国内基因组评估相比,跨国基因组评估的年轻公牛可靠性要高得多,这可以通过估计与真实育种值的平方相关系数来衡量。基因组 MACE 的可靠性提高与基因型的多性状评估相似,但计算量较少。国家之间共享参考基因型会产生很大的残差相关性,尤其是对于年轻公牛,这些相关性在基因组 MACE 中得到了考虑。

结论

国际基因组评估可以通过修改 MACE 以考虑跨国界的残差相关性或通过综合基因型文件的多性状评估来计算。可靠性的提高证明了增加计算量是合理的,但需要比以前的育种计划更多的合作。

相似文献

1
International genomic evaluation methods for dairy cattle.国际奶牛基因组评估方法。
Genet Sel Evol. 2010 Mar 1;42(1):7. doi: 10.1186/1297-9686-42-7.

引用本文的文献

9
An overview of international genetic evaluations of show jumping in sport horses.体育马匹场地障碍赛国际遗传评估概述。
Transl Anim Sci. 2022 Apr 30;6(2):txac038. doi: 10.1093/tas/txac038. eCollection 2022 Apr.

本文引用的文献

5
Efficient methods to compute genomic predictions.计算基因组预测的有效方法。
J Dairy Sci. 2008 Nov;91(11):4414-23. doi: 10.3168/jds.2007-0980.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验