Suppr超能文献

人脑的功能连接枢纽。

Functional connectivity hubs in the human brain.

机构信息

National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA.

出版信息

Neuroimage. 2011 Aug 1;57(3):908-17. doi: 10.1016/j.neuroimage.2011.05.024. Epub 2011 May 14.

Abstract

Brain networks appear to have few and well localized regions with high functional connectivity density (hubs) for fast integration of neural processing, and their dysfunction could contribute to neuropsychiatric diseases. However the variability in the distribution of these brain hubs is unknown due in part to the overwhelming computational demands associated to their localization. Recently we developed a fast algorithm to map the local functional connectivity density (lFCD). Here we extend our method to map the global density (gFDC) taking advantage of parallel computing. We mapped the gFCD in the brain of 1031 subjects from the 1000 Functional Connectomes project and show that the strongest hubs are located in regions of the default mode network (DMN) and in sensory cortices, whereas subcortical regions exhibited the weakest hubs. The strongest hubs were consistently located in ventral precuneus/cingulate gyrus (previously identified by other analytical methods including lFCD) and in primary visual cortex (BA 17/18), which highlights their centrality to resting connectivity networks. In contrast and after rescaling, hubs in prefrontal regions had lower gFCD than lFCD, which suggests that their local functional connectivity (as opposed to long-range connectivity) prevails in the resting state. The power scaling of the probability distribution of gFCD hubs (as for lFCD) was consistent across research centers further corroborating the "scale-free" topology of brain networks. Within and between-subject variability for gFCD were twice than that for lFCD (20% vs. 12% and 84% vs. 34%, respectively) suggesting that gFCD is more sensitive to individual differences in functional connectivity.

摘要

大脑网络似乎具有少数几个功能连接密度高(枢纽)的区域,这些区域有利于神经处理的快速整合,其功能障碍可能导致神经精神疾病。然而,由于与定位相关的计算需求过大,这些大脑枢纽的分布变化尚不清楚。最近,我们开发了一种快速算法来绘制局部功能连接密度(lFCD)图。在这里,我们利用并行计算将我们的方法扩展到绘制全局密度(gFCD)图。我们对来自 1000 个功能连接组学项目的 1031 名受试者的大脑进行了 gFCD 映射,并发现最强的枢纽位于默认模式网络(DMN)和感觉皮层的区域,而皮质下区域的枢纽则较弱。最强的枢纽始终位于腹侧楔前叶/扣带回(以前通过包括 lFCD 在内的其他分析方法确定)和初级视觉皮层(BA17/18),这突出了它们在静息连接网络中的中心地位。相比之下,在进行缩放后,前额叶区域的枢纽的 gFCD 比 lFCD 低,这表明它们的局部功能连接(而不是长程连接)在静息状态下占主导地位。gFCD 枢纽概率分布的幂律缩放(与 lFCD 相同)在各个研究中心都一致,进一步证实了大脑网络的“无标度”拓扑。gFCD 的组内和组间变异性是 lFCD 的两倍(分别为 20%对 12%和 84%对 34%),这表明 gFCD 对功能连接的个体差异更敏感。

相似文献

1
Functional connectivity hubs in the human brain.人脑的功能连接枢纽。
Neuroimage. 2011 Aug 1;57(3):908-17. doi: 10.1016/j.neuroimage.2011.05.024. Epub 2011 May 14.
3
Functional connectivity density mapping.功能连接密度映射
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9885-90. doi: 10.1073/pnas.1001414107. Epub 2010 May 10.
4
Association between functional connectivity hubs and brain networks.功能连接枢纽与脑网络之间的关联。
Cereb Cortex. 2011 Sep;21(9):2003-13. doi: 10.1093/cercor/bhq268. Epub 2011 Jan 31.
5
Functional connectivity hubs of the mouse brain.小鼠大脑的功能连接枢纽
Neuroimage. 2015 Jul 15;115:281-91. doi: 10.1016/j.neuroimage.2015.04.033. Epub 2015 Apr 23.

引用本文的文献

9
Reflexivity gradient-Consciousness knowing itself.反思性梯度——意识自知。
Front Psychol. 2024 Aug 23;15:1450553. doi: 10.3389/fpsyg.2024.1450553. eCollection 2024.

本文引用的文献

1
Gender differences in brain functional connectivity density.性别差异在大脑功能连接密度中的体现。
Hum Brain Mapp. 2012 Apr;33(4):849-60. doi: 10.1002/hbm.21252. Epub 2011 Mar 21.
2
Association between functional connectivity hubs and brain networks.功能连接枢纽与脑网络之间的关联。
Cereb Cortex. 2011 Sep;21(9):2003-13. doi: 10.1093/cercor/bhq268. Epub 2011 Jan 31.
3
Reproducibility of graph metrics in FMRI networks.功能磁共振成像网络中图度量的可重复性。
Front Neuroinform. 2010 Dec 8;4:117. doi: 10.3389/fninf.2010.00117. eCollection 2010.
5
Human functional connectivity: new tools, unresolved questions.人类功能连接性:新工具与未解决的问题。
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10769-70. doi: 10.1073/pnas.1005987107. Epub 2010 Jun 14.
7
Functional connectivity density mapping.功能连接密度映射
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9885-90. doi: 10.1073/pnas.1001414107. Epub 2010 May 10.
8
Neural basis of global resting-state fMRI activity.全脑静息态功能磁共振成像活动的神经基础。
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43. doi: 10.1073/pnas.0913110107. Epub 2010 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验