University of Southampton, Southampton, UK.
Lab Chip. 2011 Jul 21;11(14):2455-9. doi: 10.1039/c1lc20069k. Epub 2011 May 26.
We present a reliable technique for irreversibly bonding chemically inert Viton® membranes to PMMA and COC substrates to produce microfluidic devices with integrated elastomeric structures. Viton® is widely used in commercially available valves and has several advantages when compared to other elastomeric membranes currently utilised in microfluidic valves (e.g. PDMS), such as high solvent resistance, low porosity and high temperature tolerance. The bond strength was sufficient to withstand a fluid pressure of 400 kPa (PMMA/Viton®) and 310 kPa (COC/Viton®) before leakage or burst failure, which is sufficient for most microfluidic applications. We demonstrate and characterise on-chip pneumatic Viton® microvalves on PMMA and COC substrates. We also provide a detailed method for bonding fluorinated Viton® elastomer, a highly chemically compatible material, to PMMA and COC polymers. This allows the production of microfluidic devices able to handle a wide range of chemically harsh fluids and broadens the scope of the microfluidic platform concept.
我们提出了一种可靠的技术,可将化学惰性的 Viton® 膜不可逆地键合到 PMMA 和 COC 基底上,从而生产出具有集成弹性体结构的微流控器件。Viton® 广泛应用于市售阀门,与目前用于微流控阀门的其他弹性体膜(例如 PDMS)相比具有几个优势,例如高耐溶剂性、低孔隙率和高耐温性。键合强度足以在发生泄漏或爆裂失效之前承受 400 kPa(PMMA/Viton®)和 310 kPa(COC/Viton®)的流体压力,足以满足大多数微流控应用的要求。我们在 PMMA 和 COC 基底上展示和表征了片上气动 Viton®微阀。我们还提供了一种将高度化学相容材料氟化 Viton®弹性体键合到 PMMA 和 COC 聚合物的详细方法。这允许生产能够处理各种化学苛刻流体的微流控器件,并拓宽了微流控平台概念的范围。