Fisher Yvette E, Silies Marion, Clandinin Thomas R
Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
Neuron. 2015 Oct 21;88(2):390-402. doi: 10.1016/j.neuron.2015.09.033. Epub 2015 Oct 8.
Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing.
检测场景中边缘的方向和运动对于许多动物的视觉引导行为至关重要。大脑用于提取此类对行为至关重要的视觉线索的神经回路算法是什么?通过在果蝇中进行体内双光子钙成像,我们描述了T4和T5神经元树突中的方向选择性信号,这两种神经元是局部运动的探测器。我们证明,该神经回路对局部光输入进行选择性放大,这一观察结果限制了运动检测模型,并证实了哈森斯坦-赖夏特相关器(HRC)的一个核心预测。这些神经元还具有方向选择性,对与其偏好运动轴正交的静态特征有强烈反应,这是HRC未预测到的一种调谐特性。方向和方向的这种同时提取通过周围抑制增强了方向调谐,并揭示了果蝇和脊椎动物皮层视觉处理之间的显著平行关系,这表明存在一种通用的运动处理策略。