Suppr超能文献

一种用于映射函数值特征的灵活估计方程方法。

A flexible estimating equations approach for mapping function-valued traits.

机构信息

Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94143-0560, USA.

出版信息

Genetics. 2011 Sep;189(1):305-16. doi: 10.1534/genetics.111.129221. Epub 2011 Jul 29.

Abstract

In genetic studies, many interesting traits, including growth curves and skeletal shape, have temporal or spatial structure. They are better treated as curves or function-valued traits. Identification of genetic loci contributing to such traits is facilitated by specialized methods that explicitly address the function-valued nature of the data. Current methods for mapping function-valued traits are mostly likelihood-based, requiring specification of the distribution and error structure. However, such specification is difficult or impractical in many scenarios. We propose a general functional regression approach based on estimating equations that is robust to misspecification of the covariance structure. Estimation is based on a two-step least-squares algorithm, which is fast and applicable even when the number of time points exceeds the number of samples. It is also flexible due to a general linear functional model; changing the number of covariates does not necessitate a new set of formulas and programs. In addition, many meaningful extensions are straightforward. For example, we can accommodate incomplete genotype data, and the algorithm can be trivially parallelized. The framework is an attractive alternative to likelihood-based methods when the covariance structure of the data is not known. It provides a good compromise between model simplicity, statistical efficiency, and computational speed. We illustrate our method and its advantages using circadian mouse behavioral data.

摘要

在遗传研究中,许多有趣的特征,包括生长曲线和骨骼形状,都具有时间或空间结构。它们最好被视为曲线或函数值特征。专门的方法可以促进识别导致这些特征的遗传基因座,这些方法明确考虑了数据的函数值性质。目前用于绘制函数值特征的方法大多基于似然,需要指定分布和误差结构。然而,在许多情况下,这种指定是困难或不切实际的。我们提出了一种基于估计方程的通用功能回归方法,该方法对协方差结构的指定具有稳健性。估计基于两步最小二乘算法,即使时间点的数量超过样本数量,它也很快且适用。由于具有通用线性函数模型,它也很灵活;改变协变量的数量不需要新的公式和程序集。此外,许多有意义的扩展很简单。例如,我们可以适应不完全的基因型数据,并且算法可以轻松地并行化。当数据的协方差结构未知时,该框架是似然方法的一个有吸引力的替代方案。它在模型简单性、统计效率和计算速度之间提供了很好的折衷。我们使用昼夜节律小鼠行为数据来说明我们的方法及其优势。

相似文献

6
A multivariate model for ordinal trait analysis.一种用于有序性状分析的多变量模型。
Heredity (Edinb). 2006 Dec;97(6):409-17. doi: 10.1038/sj.hdy.6800885. Epub 2006 Aug 16.
10
Mapping quantitative trait loci for traits defined as ratios.定位定义为比率的性状的数量性状基因座。
Genetica. 2008 Mar;132(3):323-9. doi: 10.1007/s10709-007-9175-0. Epub 2007 Aug 2.

引用本文的文献

7
Matrix Linear Models for High-Throughput Chemical Genetic Screens.高通量化学遗传学筛选的矩阵线性模型。
Genetics. 2019 Aug;212(4):1063-1073. doi: 10.1534/genetics.119.302299. Epub 2019 Jun 26.

本文引用的文献

4
A robust automated system elucidates mouse home cage behavioral structure.一个强大的自动化系统阐明了小鼠笼内行为结构。
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20575-82. doi: 10.1073/pnas.0809053106. Epub 2008 Dec 23.
6
Nonparametric functional mapping of quantitative trait loci.数量性状基因座的非参数功能定位
Biometrics. 2009 Mar;65(1):30-9. doi: 10.1111/j.1541-0420.2008.01063.x. Epub 2008 Jun 5.
7
Bayesian shrinkage analysis of quantitative trait Loci for dynamic traits.动态性状数量性状位点的贝叶斯收缩分析
Genetics. 2007 Jun;176(2):1169-85. doi: 10.1534/genetics.106.064279. Epub 2007 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验