Suppr超能文献

高通量化学遗传学筛选的矩阵线性模型。

Matrix Linear Models for High-Throughput Chemical Genetic Screens.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.

Department of Microbiology and Immunology, University of California, San Francisco, California 94143.

出版信息

Genetics. 2019 Aug;212(4):1063-1073. doi: 10.1534/genetics.119.302299. Epub 2019 Jun 26.

Abstract

We develop a flexible and computationally efficient approach for analyzing high-throughput chemical genetic screens. In such screens, a library of genetic mutants is phenotyped in a large number of stresses. Typically, interactions between genes and stresses are detected by grouping the mutants and stresses into categories, and performing modified -tests for each combination. This approach does not have a natural extension if mutants or stresses have quantitative or nonoverlapping annotations (, if conditions have doses or a mutant falls into more than one category simultaneously). We develop a matrix linear model (MLM) framework that allows us to model relationships between mutants and conditions in a simple, yet flexible, multivariate framework. It encodes both categorical and continuous relationships to enhance detection of associations. We develop a fast estimation algorithm that takes advantage of the structure of MLMs. We evaluate our method's performance in simulations and in an chemical genetic screen, comparing it with an existing univariate approach based on modified -tests. We show that MLMs perform slightly better than the univariate approach when mutants and conditions are classified in nonoverlapping categories, and substantially better when conditions can be ordered in dosage categories. Therefore, it is an attractive alternative to current methods, and provides a computationally scalable framework for larger and complex chemical genetic screens. A Julia language implementation of MLMs and the code used for this paper are available at https://github.com/janewliang/GeneticScreen.jl and https://bitbucket.org/jwliang/mlm_gs_supplement, respectively.

摘要

我们开发了一种灵活且计算效率高的方法,用于分析高通量化学遗传筛选。在这种筛选中,大量的遗传突变体在大量的应激条件下进行表型分析。通常,通过将突变体和应激条件分组到类别中,并对每个组合执行修改后的检验,可以检测基因和应激之间的相互作用。如果突变体或应激具有定量或非重叠的注释(如果条件具有剂量或突变体同时属于多个类别),则这种方法没有自然的扩展。我们开发了一个矩阵线性模型 (MLM) 框架,该框架允许我们在一个简单但灵活的多变量框架中对突变体和条件之间的关系进行建模。它编码了分类和连续关系,以增强关联的检测。我们开发了一种快速估计算法,该算法利用了 MLM 的结构。我们在模拟和化学遗传筛选中评估了我们方法的性能,将其与基于修改后的检验的现有单变量方法进行了比较。我们表明,当突变体和条件被分类为非重叠类别时,MLM 比单变量方法的性能略好,当条件可以按剂量类别排序时,性能要好得多。因此,它是当前方法的一个有吸引力的替代方案,并为更大和更复杂的化学遗传筛选提供了一个计算上可扩展的框架。MLM 的 Julia 语言实现和本文使用的代码分别可在 https://github.com/janewliang/GeneticScreen.jlhttps://bitbucket.org/jwliang/mlm_gs_supplement 获得。

相似文献

1
Matrix Linear Models for High-Throughput Chemical Genetic Screens.高通量化学遗传学筛选的矩阵线性模型。
Genetics. 2019 Aug;212(4):1063-1073. doi: 10.1534/genetics.119.302299. Epub 2019 Jun 26.

本文引用的文献

8
Phenotypic landscape of a bacterial cell.细菌细胞的表型景观。
Cell. 2011 Jan 7;144(1):143-56. doi: 10.1016/j.cell.2010.11.052. Epub 2010 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验