Rothamsted Research, Centre for Sustainable Pest and Disease Management, Harpenden AL5 4JQ, United Kingdom.
Plant Physiol. 2011 Sep;157(1):317-27. doi: 10.1104/pp.111.180224. Epub 2011 Jul 5.
Benzoxazinoids (BXs), such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. The first step in BX biosynthesis converts indole-3-glycerol phosphate into indole. In maize (Zea mays), this reaction is catalyzed by either BENZOXAZINELESS1 (BX1) or INDOLE GLYCEROL PHOSPHATE LYASE (IGL). The Bx1 gene is under developmental control and is mainly responsible for BX production, whereas the Igl gene is inducible by stress signals, such as wounding, herbivory, or jasmonates. To determine the role of BXs in defense against aphids and fungi, we compared basal resistance between Bx1 wild-type and bx1 mutant lines in the igl mutant background, thereby preventing BX production from IGL. Compared to Bx1 wild-type plants, BX-deficient bx1 mutant plants allowed better development of the cereal aphid Rhopalosiphum padi, and were affected in penetration resistance against the fungus Setosphaeria turtica. At stages preceding major tissue disruption, R. padi and S. turtica elicited increased accumulation of DIMBOA-glucoside, DIMBOA, and 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucoside (HDMBOA-glc), which was most pronounced in apoplastic leaf extracts. Treatment with the defense elicitor chitosan similarly enhanced apoplastic accumulation of DIMBOA and HDMBOA-glc, but repressed transcription of genes controlling BX biosynthesis downstream of BX1. This repression was also obtained after treatment with the BX precursor indole and DIMBOA, but not with HDMBOA-glc. Furthermore, BX-deficient bx1 mutant lines deposited less chitosan-induced callose than Bx1 wild-type lines, whereas apoplast infiltration with DIMBOA, but not HDMBOA-glc, mimicked chitosan-induced callose. Hence, DIMBOA functions as a defense regulatory signal in maize innate immunity, which acts in addition to its well-characterized activity as a biocidal defense metabolite.
苯并恶嗪类(BXs),如 2,4-二羟基-7-甲氧基-2H-1,4-苯并恶嗪-3(4H)-酮(DIMBOA),是禾本科植物中的次生代谢物。BX 生物合成的第一步是将吲哚-3-甘油磷酸转化为吲哚。在玉米(Zea mays)中,该反应由 BENZOXAZINELESS1(BX1)或吲哚甘油磷酸酯酶(IGL)催化。Bx1 基因受发育调控,主要负责 BX 的产生,而 Igl 基因受胁迫信号诱导,如创伤、草食或茉莉酸。为了确定 BXs 在防御蚜虫和真菌中的作用,我们比较了在 igl 突变体背景下 Bx1 野生型和 bx1 突变体之间的基础抗性,从而防止 IGL 产生 BX。与 Bx1 野生型植物相比,BX 缺陷型 bx1 突变体植物允许禾谷缢管蚜更好地发育,并影响对真菌禾谷核腔菌的穿透抗性。在主要组织破坏之前的阶段,禾谷缢管蚜和禾谷核腔菌诱导 DIMBOA-葡萄糖苷、DIMBOA 和 2-羟基-4,7-二甲氧基-1,4-苯并恶嗪-3-酮-葡萄糖苷(HDMBOA-glc)的积累增加,在质外体叶片提取物中最为明显。用防御诱导剂壳聚糖处理同样增强了 DIMBOA 和 HDMBOA-glc 的质外体积累,但抑制了 BX1 下游控制 BX 生物合成的基因的转录。在用 BX 前体吲哚和 DIMBOA 处理后也得到了这种抑制,但用 HDMBOA-glc 处理则没有。此外,BX 缺陷型 bx1 突变体系比 Bx1 野生型系沉积的壳聚糖诱导的几丁质少,而质外体渗透 DIMBOA,但不是 HDMBOA-glc,模拟壳聚糖诱导的几丁质。因此,DIMBOA 在玉米先天免疫中作为防御调节信号发挥作用,除了其作为杀菌防御代谢物的作用外,还发挥作用。