Suppr超能文献

基于循环变量的基于小波变换的人工神经网络 (WT-ANN) 在 PM10 污染水平估计中的应用。

Wavelet transform-based artificial neural networks (WT-ANN) in PM10 pollution level estimation, based on circular variables.

机构信息

Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.

出版信息

Environ Sci Pollut Res Int. 2012 Jan;19(1):256-68. doi: 10.1007/s11356-011-0554-9. Epub 2011 Jul 7.

Abstract

INTRODUCTION

In this paper, a novel method in the estimation and prediction of PM(10) is introduced using wavelet transform-based artificial neural networks (WT-ANN).

DISCUSSION

First, the application of wavelet transform, selected for its temporal shift properties and multiresolution analysis characteristics enabling it to reduce disturbing perturbations in input training set data, is presented. Afterward, the circular statistical indices which are used in this method are formally introduced in order to investigate the relation between PM(10) levels and circular meteorological variables. Then, the results of the simulation of PM(10) based on WT-ANN by use of MATLAB software are discussed. The results of the above-mentioned simulation show an enhanced accuracy and speed in PM(10) estimation/prediction and a high degree of robustness compared with traditional ANN models.

摘要

简介

本文提出了一种基于小波变换的人工神经网络(WT-ANN)的 PM(10) 估算和预测的新方法。

讨论

首先,介绍了小波变换的应用,小波变换因其时间位移特性和多分辨率分析特性而被选中,能够减少输入训练集数据中的干扰扰动。然后,正式介绍了本方法中使用的圆形统计指标,以便研究 PM(10)水平与圆形气象变量之间的关系。然后,讨论了使用 MATLAB 软件基于 WT-ANN 对 PM(10)进行模拟的结果。上述模拟结果表明,与传统的 ANN 模型相比,在 PM(10)估算/预测方面具有更高的准确性和速度,并且具有高度的鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验