Suppr超能文献

基于外观的多对比度磁共振成像分割海马体和杏仁核的方法。

Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging.

机构信息

McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada H3A 2B4.

出版信息

Neuroimage. 2011 Sep 15;58(2):549-59. doi: 10.1016/j.neuroimage.2011.06.054. Epub 2011 Jun 25.

Abstract

A new automatic model-based segmentation scheme that combines level set shape modeling and active appearance modeling (AAM) is presented. Since different MR image contrasts can yield complementary information, multi-contrast images can be incorporated into the active appearance modeling to improve segmentation performance. During active appearance modeling, the weighting of each contrast is optimized to account for the potentially varying contribution of each image while optimizing the model parameters that correspond to the shape and appearance eigen-images in order to minimize the difference between the multi-contrast test images and the ones synthesized from the shape and appearance modeling. As appearance-based modeling techniques are dependent on the initial alignment of training data, we compare (i) linear alignment of whole brain, (ii) linear alignment of a local volume of interest and (iii) non-linear alignment of a local volume of interest. The proposed segmentation scheme can be used to segment human hippocampi (HC) and amygdalae (AG), which have weak intensity contrast with their background in MRI. The experiments demonstrate that non-linear alignment of training data yields the best results and that multimodal segmentation using T1-weighted, T2-weighted and proton density-weighted images yields better segmentation results than any single contrast. In a four-fold cross validation with eighty young normal subjects, the method yields a mean Dice к of 0.87 with intraclass correlation coefficient (ICC) of 0.946 for HC and a mean Dice к of 0.81 with ICC of 0.924 for AG between manual and automatic labels.

摘要

提出了一种新的基于模型的自动分割方案,该方案结合了水平集形状建模和主动外观建模(AAM)。由于不同的磁共振图像对比度可以产生互补信息,因此可以将多对比度图像合并到主动外观建模中,以提高分割性能。在主动外观建模中,优化每个对比度的权重以考虑每个图像的潜在变化贡献,同时优化对应于形状和外观特征图像的模型参数,以最小化多对比度测试图像与从形状和外观建模合成的图像之间的差异。由于基于外观的建模技术依赖于训练数据的初始对齐,我们比较了 (i) 整个大脑的线性对齐,(ii) 局部感兴趣区域的线性对齐和 (iii) 局部感兴趣区域的非线性对齐。所提出的分割方案可用于分割人海马体(HC)和杏仁核(AG),这些组织在 MRI 中与背景的强度对比度较弱。实验表明,训练数据的非线性对齐可获得最佳结果,并且使用 T1 加权、T2 加权和质子密度加权图像进行多模态分割可获得比任何单一对比度更好的分割结果。在对 80 名年轻正常受试者进行的四折交叉验证中,该方法在手动和自动标签之间的 HC 中获得了 0.87 的平均 Dice к 和 0.946 的组内相关系数(ICC),AG 中获得了 0.81 的平均 Dice к 和 0.924 的 ICC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验