Shi Jian, Hong Hao, Ding Yong, Yang Yunan, Cai Weibo, Wang Xudong
Department of Materials Science and Engineering, University of Wisconsin-Madison.
J Mater Chem. 2011 May 14;21(25):9000-9008. doi: 10.1039/C1JM10918A.
In-depth understanding of the kinetics of the vapor deposition process is substantial for advancing this capable bottom-up nanostructure synthesis approach into a versatile large-scale nanomanufacturing technology. In this paper, we report a systematic study of the vapor deposition kinetics of ZnO nanomaterials under controlled atmosphere and properly refined deposition conditions. The experiments clearly evidenced the self-catalyzed growth of ZnO NWs via the formation of ZnO nanoflowers. This result illustrated how ZnO morphologies were associated with the discrepancy between oxidation rate and condensation rate of Zn. The capability of switching the NW morphologies and possibly mechanisms was demonstrated by kinetically controlling the deposition system. The high Zn composition during the deposition resulted in strongly luminescent NWs, which can be used for optical imaging applications. This research discovered a fundamental kinetics that governs the mechanisms and morphology selection of nanostructures in a non-catalyst growth system.
深入了解气相沉积过程的动力学对于将这种可行的自下而上的纳米结构合成方法推进到通用的大规模纳米制造技术至关重要。在本文中,我们报告了在可控气氛和适当优化的沉积条件下对ZnO纳米材料气相沉积动力学的系统研究。实验清楚地证明了通过形成ZnO纳米花实现ZnO纳米线的自催化生长。该结果说明了ZnO形态如何与Zn的氧化速率和冷凝速率之间的差异相关。通过动力学控制沉积系统证明了切换纳米线形态以及可能的机制的能力。沉积过程中高Zn组成导致强发光纳米线,可用于光学成像应用。这项研究发现了一种基本动力学,它控制着非催化剂生长系统中纳米结构的机制和形态选择。