Suppr超能文献

TiO2 微纳杂化表面减轻光功能化钛的生物老化。

TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium.

机构信息

Laboratory of Bone and Implant Sciences (LBIS), The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA.

出版信息

Int J Nanomedicine. 2011;6:1327-41. doi: 10.2147/IJN.S22099. Epub 2011 Jun 28.

Abstract

Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO(2) nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow-derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%-50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl(-)anions. A thin TiO(2) coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium bioactivity after UV photofunctionalization compared with titanium surfaces with microtopography alone. This antibiological aging effect was largely regulated by its sustained electropositivity uniquely conferred in TiO(2) nanonodules, and was independent of the degree of hydrophilicity. These results demonstrate the potential usefulness of these hybrid surfaces to effectively utilize the benefits of UV photofunctionalization and provide a model to explore the mechanisms underlying antibiological aging properties.

摘要

钛的生物活性和骨诱导性会随着表面处理后的时间推移而逐渐下降。这种时间相关的降解是显著的,被定义为钛的生物老化。紫外线处理已被证明可以使老化表面重新活跃,这一过程被称为光功能化。本研究旨在确定经过光功能化处理后,具有微纳复合形貌的钛与仅具有微观形貌的钛在生物老化行为上是否存在差异。钛盘经酸蚀在表面形成微坑,然后通过使用先前建立的自组装方案,将 300nm 直径的 TiO2 结节沉积在微坑上,形成微纳复合表面。这些磁盘在黑暗中储存 8 周以允许充分老化,然后用紫外线照射 48 小时。将大鼠骨髓源性成骨细胞培养在新鲜磁盘(紫外线处理后立即)、3 天的磁盘(紫外线处理后储存 3 天)和 7 天的磁盘上。细胞附着、扩散、增殖的速率以及碱性磷酸酶活性和钙沉积水平在微坑表面降低了 30%-50%,这取决于钛的老化程度。相比之下,7 天的复合表面与新鲜表面相比保持了相当的生物活性水平。微坑和微纳复合表面在紫外线处理后立即具有超亲水性。然而,7 天后,微纳复合表面变得疏水性,而微坑表面保持亲水性。用 Cl(-)阴离子处理这些表面会使微纳复合表面的持续生物活性水平失效。微坑表面上没有形成纳米结节的 TiO2 薄涂层不会导致生物活性随时间下降的预防或缓解。总之,与仅具有微观形貌的钛表面相比,微纳复合钛表面可能会减缓紫外线光功能化后钛生物活性的时间依赖性降解速率。这种抗生物老化效应主要受 TiO2 纳米结节赋予的持续正电性调节,而与亲水性程度无关。这些结果表明,这些混合表面具有潜在的有用性,可以有效地利用紫外线光功能化的好处,并提供了一个模型来探索抗生物老化特性的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b4/3133524/a814e15462c9/ijn-6-1327f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验