Suppr超能文献

可见光引发负载间充质干细胞的生物响应水凝胶。

Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels.

机构信息

Oregon Health & Science University, Department of Orthopaedics & Rehabilitation, 3181 Sam Jackson Park Road, Portland OR 97239, USA.

出版信息

Eur Cell Mater. 2011 Jul 15;22:43-55; discussion 55. doi: 10.22203/ecm.v022a04.

Abstract

Biological activity can be added to synthetic scaffolds by incorporating functional peptide sequences that provide enzyme-mediated degradation sites, facilitate cellular adhesion or stimulate signaling pathways. Poly(ethylene glycol) diacrylate is a popular synthetic base for tissue engineering scaffolds because it creates a hydrophilic environment that can be chemically manipulated to add this biological functionality. Furthermore, the acrylate groups allow for encapsulation of cells using photopolymerization under physiological conditions. One complication with the addition of these peptides is that aromatic amino acids absorb light at 285 nm and compete with the ultraviolet (UV)-sensitive photoinitiators such as IrgacureTM 2959 (I2959), the most commonly used initiator for cytocompatible photoencapsulation of cells into synthetic scaffolds. In this study we define non-toxic conditions for photoencapsulation of human mesenchymal stem cells (hMSC) in PEGDA scaffolds using a visible light photoinitiator system composed of eosin Y, triethanolamine and 1-vinyl-2-pyrrolidinone. This visible light photoinitiator produced hydrogel scaffolds with an increased viability of encapsulated hMSCs and a more tightly crosslinked network in one-third the time of UV polymerization with I2959.

摘要

生物活性可以通过将提供酶介导的降解位点、促进细胞黏附和刺激信号通路的功能肽序列整合到合成支架中得到增强。聚(乙二醇)二丙烯酸酯是组织工程支架的一种常用合成基质,因为它可以创造出亲水性环境,通过化学手段来添加这种生物功能。此外,丙烯酸酯基团允许在生理条件下使用光聚合来封装细胞。添加这些肽的一个复杂问题是,芳香族氨基酸在 285nm 处吸收光,并与紫外线(UV)敏感的光引发剂(如 IrgacureTM 2959(I2959))竞争,I2959 是最常用于将细胞包封到合成支架中的细胞相容性光聚合的引发剂。在这项研究中,我们使用由曙红 Y、三乙醇胺和 1-乙烯基-2-吡咯烷酮组成的可见光引发剂系统,确定了在 PEGDA 支架中光封装人骨髓间充质干细胞(hMSC)的无毒条件。该可见光引发剂在三分之一的时间内产生了具有更高封装 hMSC 活力的水凝胶支架,并且交联网络更紧密,而使用 I2959 进行 UV 聚合则需要相同的时间。

相似文献

1
Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels.
Eur Cell Mater. 2011 Jul 15;22:43-55; discussion 55. doi: 10.22203/ecm.v022a04.
2
Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
Acta Biomater. 2014 Jan;10(1):104-14. doi: 10.1016/j.actbio.2013.08.044. Epub 2013 Sep 8.
3
Modular and Adaptable Tumor Niche Prepared from Visible Light Initiated Thiol-Norbornene Photopolymerization.
Biomacromolecules. 2016 Dec 12;17(12):3872-3882. doi: 10.1021/acs.biomac.6b00931. Epub 2016 Nov 11.
5
Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
Acta Biomater. 2012 May;8(5):1838-48. doi: 10.1016/j.actbio.2011.12.034. Epub 2012 Jan 13.
7
8
Long-term spatially defined coculture within three-dimensional photopatterned hydrogels.
Tissue Eng Part C Methods. 2010 Dec;16(6):1621-8. doi: 10.1089/ten.TEC.2010.0146. Epub 2010 Jun 7.
10
Pre-culture of mesenchymal stem cells within RGD-modified hyaluronic acid hydrogel improves their resilience to ischaemic conditions.
Acta Biomater. 2020 Apr 15;107:78-90. doi: 10.1016/j.actbio.2020.02.043. Epub 2020 Mar 4.

引用本文的文献

1
Stimuli-Responsive Self-Healing Ionic Gels: A Promising Approach for Dermal and Tissue Engineering Applications.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1338-1372. doi: 10.1021/acsbiomaterials.4c02264. Epub 2025 Feb 25.
4
In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes.
Bioengineering (Basel). 2023 Jun 26;10(7):767. doi: 10.3390/bioengineering10070767.
5
The application and prospects of 3D printable microgel in biomedical science and engineering.
Int J Bioprint. 2023 May 16;9(5):753. doi: 10.18063/ijb.753. eCollection 2023.
6
Photocrosslinkable natural polymers in tissue engineering.
Front Bioeng Biotechnol. 2023 Mar 2;11:1127757. doi: 10.3389/fbioe.2023.1127757. eCollection 2023.
9
Designing a 3D Printing Based Auxetic Cardiac Patch with hiPSC-CMs for Heart Repair.
J Cardiovasc Dev Dis. 2021 Dec 3;8(12):172. doi: 10.3390/jcdd8120172.

本文引用的文献

1
A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells.
FASEB J. 2011 May;25(5):1486-96. doi: 10.1096/fj.10-165514. Epub 2011 Jan 31.
2
A novel bioreactor for the dynamic stimulation and mechanical evaluation of multiple tissue-engineered constructs.
Tissue Eng Part C Methods. 2011 Mar;17(3):367-74. doi: 10.1089/ten.TEC.2010.0381. Epub 2010 Dec 6.
3
Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels.
Tissue Eng Part A. 2011 Feb;17(3-4):371-80. doi: 10.1089/ten.TEA.2009.0839. Epub 2010 Oct 25.
4
Designing materials to direct stem-cell fate.
Nature. 2009 Nov 26;462(7272):433-41. doi: 10.1038/nature08602.
5
Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels.
Osteoarthritis Cartilage. 2009 Dec;17(12):1639-48. doi: 10.1016/j.joca.2009.07.003. Epub 2009 Jul 15.
6
Complexity in biomaterials for tissue engineering.
Nat Mater. 2009 Jun;8(6):457-70. doi: 10.1038/nmat2441.
7
Biomaterials: Spotlight on hydrogels.
Nat Mater. 2009 Jun;8(6):451-3. doi: 10.1038/nmat2458.
8
Tissue engineering in the rheumatic diseases.
Arthritis Res Ther. 2009;11(1):211. doi: 10.1186/ar2572. Epub 2009 Jan 30.
9
Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament.
J Appl Physiol (1985). 2009 Feb;106(2):423-31. doi: 10.1152/japplphysiol.90748.2008. Epub 2008 Dec 12.
10
The effect of photopolymerization on stem cells embedded in hydrogels.
Biomaterials. 2009 Jan;30(3):344-53. doi: 10.1016/j.biomaterials.2008.09.037. Epub 2008 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验