Suppr超能文献

循环电场流分离法对纳米颗粒的表征。

Nanoparticle characterization by cyclical electrical field-flow fractionation.

机构信息

Université de Pau et des Pays de l'Adour (UPPA)/CNRS Laboratoire de Chimie analytique Bio-Inorganique et Environnement, UMR IPREM 5254-Technopôle Hélioparc, Av. du Président Angot, 64053 Pau Cedex, France.

出版信息

Anal Chem. 2011 Sep 1;83(17):6565-72. doi: 10.1021/ac2008948. Epub 2011 Aug 9.

Abstract

In this work, the analytical potential of cyclical electrical field flow fractionation (CyElFFF) for nanomaterial and colloidal particle characterization has been experimentally demonstrated. Different operating parameters were investigated in order to evaluate their effect on the mechanisms of retention and fractionation power of CyElFFF. The voltage and frequency of the oscillating electrical field appeared to be the most influential parameters controlling the separation mode. Mobile phase flow rate was also found to be a key parameter controlling the fractionation efficiency. This work allowed the definition of operating conditions such that a reliable CyElFFF analysis could be performed on different nanoparticles on the basis of the direct comparison of their theoretical and experimental behavior. The results show that this technique in optimized conditions is a powerful tool for electrophoretic mobility based separation and characterization of various nanoparticles.

摘要

在这项工作中,我们通过实验证明了循环电场流分离(CyElFFF)在纳米材料和胶体颗粒特性分析方面的分析潜力。研究了不同的操作参数,以评估它们对 CyElFFF 保留机制和分级能力的影响。结果表明,振荡电场的电压和频率是控制分离模式的最具影响力的参数。流动相流速也被发现是控制分级效率的关键参数。这项工作允许定义操作条件,以便能够根据不同纳米颗粒的理论和实验行为的直接比较,对它们进行可靠的 CyElFFF 分析。结果表明,在优化条件下,该技术是一种基于电泳迁移率的分离和各种纳米颗粒特性分析的强大工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验