Suppr超能文献

基于维纳滤波器和 CLAHE 的彩色眼底视网膜图像增强混合算法。

A Hybrid Algorithm to Enhance Colour Retinal Fundus Images Using a Wiener Filter and CLAHE.

机构信息

Department of Medical Instrumentation Techniques Engineering, AL-Hussain University College, Karbala, Iraq.

出版信息

J Digit Imaging. 2021 Jun;34(3):750-759. doi: 10.1007/s10278-021-00447-0. Epub 2021 Apr 22.

Abstract

Digital images used in the field of ophthalmology are among the most important methods for automatic detection of certain eye diseases. These processes include image enhancement as a primary step to assist optometrists in identifying diseases. Therefore, many algorithms and methods have been developed for the enhancement of retinal fundus images, which may experience challenges that typically accompany enhancement processes, such as artificial borders and dim lighting that mask image details. To eliminate these problems, a new algorithm is proposed in this paper based on separating colour images into three channels (red, green, and blue). The green channel is passed through a Wiener filter and reinforced using the CLAHE technique before merging with the original red and blue channels. Reducing the green channel noise with this approach is proven effective over the other colour channels. Results from the Contrast Improvement Index (CII) and linear index of fuzziness (r) test indicate the success of the proposed algorithm compared with alternate algorithms in the application of improving blood vessel imagery and other details within ten test fundus images selected from the DRIVER database.

摘要

在眼科领域中,数字图像是自动检测某些眼部疾病的最重要方法之一。这些过程包括图像增强,作为辅助验光师识别疾病的首要步骤。因此,已经开发出许多用于增强视网膜眼底图像的算法和方法,这些图像可能会遇到增强过程中常见的挑战,例如人工边界和昏暗的光线会掩盖图像细节。为了解决这些问题,本文提出了一种新的算法,该算法基于将彩色图像分为三个通道(红色、绿色和蓝色)。绿色通道通过 Wiener 滤波器进行处理,并使用 CLAHE 技术进行增强,然后与原始的红色和蓝色通道合并。事实证明,与其他颜色通道相比,这种方法可以有效地减少绿色通道的噪声。对比度改善指数 (CII) 和模糊线性指数 (r) 测试的结果表明,与替代算法相比,该算法在应用于改善血管图像和从 DRIVER 数据库中选择的十个测试眼底图像中的其他细节方面取得了成功。

相似文献

4
Multi-proportion channel ensemble model for retinal vessel segmentation.多比例通道集成模型在视网膜血管分割中的应用。
Comput Biol Med. 2019 Aug;111:103352. doi: 10.1016/j.compbiomed.2019.103352. Epub 2019 Jul 9.
7
Blood vessel segmentation in color fundus images based on regional and Hessian features.基于区域和黑塞特征的彩色眼底图像血管分割
Graefes Arch Clin Exp Ophthalmol. 2017 Aug;255(8):1525-1533. doi: 10.1007/s00417-017-3677-y. Epub 2017 May 4.
8
[Enhancement and assessment of the fundus image].[眼底图像的增强与评估]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2014 Oct;31(5):1144-8.
10
Modeling and Enhancing Low-Quality Retinal Fundus Images.眼底低质量图像的建模与增强。
IEEE Trans Med Imaging. 2021 Mar;40(3):996-1006. doi: 10.1109/TMI.2020.3043495. Epub 2021 Mar 2.

引用本文的文献

本文引用的文献

3
Regenerating optic pathways from the eye to the brain.从眼睛到大脑的视神经通路再生。
Science. 2017 Jun 9;356(6342):1031-1034. doi: 10.1126/science.aal5060.
4
Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment.基于亮度和对比度调整的彩色视网膜图像增强。
IEEE Trans Biomed Eng. 2018 Mar;65(3):521-527. doi: 10.1109/TBME.2017.2700627. Epub 2017 May 3.
7
A neuronal circuit for colour vision based on rod-cone opponency.基于视杆-视锥拮抗的色觉神经元回路
Nature. 2016 Apr 14;532(7598):236-9. doi: 10.1038/nature17158. Epub 2016 Apr 6.
9
Visual prostheses for the blind.用于盲人的视觉假体。
Trends Biotechnol. 2013 Oct;31(10):562-71. doi: 10.1016/j.tibtech.2013.07.001. Epub 2013 Aug 14.
10
Retinal imaging and image analysis.视网膜成像与图像分析。
IEEE Rev Biomed Eng. 2010;3:169-208. doi: 10.1109/RBME.2010.2084567.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验