Suppr超能文献

相似文献

2
Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid).
Prog Polym Sci. 2019 Nov;98. doi: 10.1016/j.progpolymsci.2019.101146. Epub 2019 Aug 9.
3
Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.
Regen Eng Transl Med. 2017 Mar;3(1):15-31. doi: 10.1007/s40883-016-0022-7. Epub 2017 Jan 30.
4
Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.
Biomaterials. 2010 Jun;31(18):4898-908. doi: 10.1016/j.biomaterials.2010.02.058. Epub 2010 Mar 23.
5
A Regenerative Polymer Blend Composed of Glycylglycine ethyl ester-substituted Polyphosphazene and Poly (lactic-co-glycolic acid).
ACS Appl Polym Mater. 2020 Mar 13;2(3):1169-1179. doi: 10.1021/acsapm.9b00993. Epub 2020 Jan 8.
7
A Versatile In Situ Precipitation Assisted Direct-Write-3D Printing Strategy for Skinless Hierarchical Porous Polymeric Scaffolds.
Macromol Rapid Commun. 2025 Jan;46(1):e2400576. doi: 10.1002/marc.202400576. Epub 2024 Sep 16.
9
One-pot porogen free method fabricated porous microsphere-aggregated 3D PCL scaffolds for bone tissue engineering.
J Biomed Mater Res B Appl Biomater. 2020 Aug;108(6):2699-2710. doi: 10.1002/jbm.b.34601. Epub 2020 Mar 10.
10
High Internal Phase Emulsion-Templated Hydrophilic Polyphosphoester Scaffolds: Tailoring the Porosity and Degradation for Soft Tissue Engineering.
Biomacromolecules. 2025 Mar 10;26(3):1935-1947. doi: 10.1021/acs.biomac.4c01740. Epub 2025 Feb 16.

引用本文的文献

1
Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives.
Regen Biomater. 2022 Dec 26;10:rbac109. doi: 10.1093/rb/rbac109. eCollection 2023.
2
Biodegradable Polyphosphazenes for Regenerative Engineering.
J Mater Res. 2022 Apr;37(8):1417-1428. doi: 10.1557/s43578-022-00551-z. Epub 2022 Apr 18.
3
Biomedical applications of polyphosphazenes.
Med Devices Sens. 2020 Dec;3(6). doi: 10.1002/mds3.10113. Epub 2020 Aug 2.
4
Natural bio-based monomers for biomedical applications: a review.
Biomater Res. 2021 Apr 1;25(1):8. doi: 10.1186/s40824-021-00208-8.
5
A Regenerative Polymer Blend Composed of Glycylglycine ethyl ester-substituted Polyphosphazene and Poly (lactic-co-glycolic acid).
ACS Appl Polym Mater. 2020 Mar 13;2(3):1169-1179. doi: 10.1021/acsapm.9b00993. Epub 2020 Jan 8.
7
Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery.
J Vac Sci Technol B Nanotechnol Microelectron. 2020 May;38(3):030801. doi: 10.1116/6.0000055. Epub 2020 Apr 9.
9
Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid).
Prog Polym Sci. 2019 Nov;98. doi: 10.1016/j.progpolymsci.2019.101146. Epub 2019 Aug 9.
10
POLYMERIC BIOMATERIALS FOR SCAFFOLD-BASED BONE REGENERATIVE ENGINEERING.
Regen Eng Transl Med. 2019 Jun;5(2):128-154. doi: 10.1007/s40883-018-0072-0. Epub 2018 Jul 20.

本文引用的文献

1
Non-covalent polymer assembly using arrays of hydrogen-bonds.
Soft Matter. 2007 Mar 20;3(4):409-425. doi: 10.1039/b612566b.
2
Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.
Biomaterials. 2010 Jun;31(18):4898-908. doi: 10.1016/j.biomaterials.2010.02.058. Epub 2010 Mar 23.
5
Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11099-104. doi: 10.1073/pnas.0800069105. Epub 2008 Aug 4.
7
Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends.
Biomacromolecules. 2007 Apr;8(4):1306-12. doi: 10.1021/bm061064q. Epub 2007 Mar 6.
8
The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective.
Clin Orthop Relat Res. 2006 Jun;447:221-36. doi: 10.1097/01.blo.0000194677.02506.45.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验