Suppr超能文献

壳聚糖-海藻酸钠微纤维的微流控湿法纺丝及其在纤维中包封 HepG2 细胞。

Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers.

出版信息

Biomicrofluidics. 2011 Jun;5(2):22208. doi: 10.1063/1.3576903. Epub 2011 Jun 29.

Abstract

The successful encapsulation of human hepatocellular carcinoma (HepG2) cells would greatly assist a broad range of applications in tissue engineering. Due to the harsh conditions during standard chitosan fiber fabrication processes, encapsulation of HepG2 cells in chitosan fibers has been challenging. Here, we describe the successful wet-spinning of chitosan-alginate fibers using a coaxial flow microfluidic chip. We determined the optimal mixing conditions for generating chitosan-alginate fibers, including a 1:5 ratio of 2% (w∕w) water-soluble chitosan (WSC) solution to 2% (w∕w) alginate solution. Ratio including higher than 2% (w∕w) WSC solution increased aggregation throughout the mixture. By suspending cells in the WSC-alginate solution, we successfully fabricated HepG2 cell-laden fibers. The encapsulated HepG2 cells in the chitosan-alginate fibers were more viable than cells encapsulated in pure alginate fibers, suggesting that cross-linked chitosan provides a better environment for HepG2 cells than alginate alone. In addition, we found that the adhesion of HepG2 cells on the chitosan-alginate fiber is much better than that on the alginate fibers.

摘要

成功地将人肝癌细胞(HepG2)封装到纤维中,将极大地促进组织工程学的广泛应用。由于在标准壳聚糖纤维制造过程中条件苛刻,因此将 HepG2 细胞封装到壳聚糖纤维中具有挑战性。在这里,我们使用同轴流微流控芯片成功地纺制了壳聚糖-海藻酸钠纤维。我们确定了生成壳聚糖-海藻酸钠纤维的最佳混合条件,包括将 2%(w∕w)水溶性壳聚糖(WSC)溶液与 2%(w∕w)海藻酸钠溶液以 1:5 的比例混合。包括高于 2%(w∕w)WSC 溶液的比例会增加混合物中的聚集。通过将细胞悬浮在 WSC-海藻酸钠溶液中,我们成功地制备了负载 HepG2 细胞的纤维。与封装在纯海藻酸钠纤维中的细胞相比,封装在壳聚糖-海藻酸钠纤维中的 HepG2 细胞具有更高的活力,这表明交联壳聚糖比单独的海藻酸钠为 HepG2 细胞提供了更好的环境。此外,我们发现 HepG2 细胞在壳聚糖-海藻酸钠纤维上的黏附性明显优于在海藻酸钠纤维上的黏附性。

相似文献

1
Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers.
Biomicrofluidics. 2011 Jun;5(2):22208. doi: 10.1063/1.3576903. Epub 2011 Jun 29.
2
Dissolvable Calcium Alginate Microfibers Produced via Immersed Microfluidic Spinning.
Micromachines (Basel). 2023 Jan 26;14(2):318. doi: 10.3390/mi14020318.
3
Wet-spinning of magneto-responsive helical chitosan microfibers.
Beilstein J Nanotechnol. 2020 Jul 7;11:991-999. doi: 10.3762/bjnano.11.83. eCollection 2020.
4
Spray-spinning: a novel method for making alginate/chitosan fibrous scaffold.
J Mater Sci Mater Med. 2010 Feb;21(2):497-506. doi: 10.1007/s10856-009-3867-1. Epub 2009 Sep 16.
5
Hydro-spinning: a novel technology for making alginate/chitosan fibrous scaffold.
J Biomed Mater Res A. 2010 Jun 1;93(3):910-9. doi: 10.1002/jbm.a.32590.
6
Simple fabrication of inner chitosan-coated alginate hollow microfiber with higher stability.
J Biomed Mater Res B Appl Biomater. 2019 Nov;107(8):2527-2536. doi: 10.1002/jbm.b.34343. Epub 2019 Feb 19.
7
Microfluidic Manufacturing of Alginate Fibers with Encapsulated Astrocyte Cells.
ACS Appl Bio Mater. 2019 Apr 15;2(4):1603-1613. doi: 10.1021/acsabm.9b00022. Epub 2019 Mar 27.
8
Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Co-Culture via Microfluidic Spinning.
Macromol Biosci. 2020 Mar;20(3):e1900395. doi: 10.1002/mabi.201900395. Epub 2020 Feb 5.
10
Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
Acta Biomater. 2016 Jul 1;38:153-62. doi: 10.1016/j.actbio.2016.04.036. Epub 2016 Apr 27.

引用本文的文献

1
Fabrication of Hydrogel-Based Composite Fibers and Computer Simulation of the Filler Dynamics in the Composite Flow.
Bioengineering (Basel). 2023 Apr 6;10(4):448. doi: 10.3390/bioengineering10040448.
2
Role of Polymers in Microfluidic Devices.
Polymers (Basel). 2022 Nov 25;14(23):5132. doi: 10.3390/polym14235132.
4
Microfluidic-assisted fiber production: Potentials, limitations, and prospects.
Biomicrofluidics. 2022 Nov 17;16(6):061504. doi: 10.1063/5.0129108. eCollection 2022 Dec.
5
(Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective.
Adv Nanobiomed Res. 2022 Apr;2(4). doi: 10.1002/anbr.202100073. Epub 2022 Jan 5.
6
Tunable Spun Fiber Constructs in Biomedicine: Influence of Processing Parameters in the Fibers' Architecture.
Pharmaceutics. 2022 Jan 11;14(1):164. doi: 10.3390/pharmaceutics14010164.
7
Novel Adsorbent Based on Banana Peel Waste for Removal of Heavy Metal Ions from Synthetic Solutions.
Materials (Basel). 2021 Jul 14;14(14):3946. doi: 10.3390/ma14143946.
8
Alginate Microencapsulation for Three-Dimensional In Vitro Cell Culture.
ACS Biomater Sci Eng. 2021 Jul 12;7(7):2864-2879. doi: 10.1021/acsbiomaterials.0c00457. Epub 2020 Jun 25.
9
Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate.
Polymers (Basel). 2021 May 24;13(11):1709. doi: 10.3390/polym13111709.
10
Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
PLoS One. 2021 Feb 3;16(2):e0245206. doi: 10.1371/journal.pone.0245206. eCollection 2021.

本文引用的文献

1
Chitin, chitosan and derivatives for wound healing and tissue engineering.
Adv Biochem Eng Biotechnol. 2011;125:1-27. doi: 10.1007/10_2010_93.
2
Characterization of ph- and thermosensitive hydrogel as a vehicle for controlled protein delivery.
J Pharm Sci. 2011 Mar;100(3):886-95. doi: 10.1002/jps.22328. Epub 2010 Sep 22.
3
Multilayer microfluidic PEGDA hydrogels.
Biomaterials. 2010 Jul;31(21):5491-7. doi: 10.1016/j.biomaterials.2010.03.031. Epub 2010 May 5.
4
Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip.
Lab Chip. 2010 May 21;10(10):1328-34. doi: 10.1039/b924987g. Epub 2010 Mar 8.
5
Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment.
Biomaterials. 2010 Aug;31(22):5903-10. doi: 10.1016/j.biomaterials.2010.03.062. Epub 2010 Apr 24.
6
Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture.
Acta Biomater. 2010 Jun;6(6):2132-9. doi: 10.1016/j.actbio.2009.12.036. Epub 2009 Dec 24.
7
Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers.
Biomaterials. 2009 Oct;30(30):6094-101. doi: 10.1016/j.biomaterials.2009.07.046. Epub 2009 Aug 11.
8
Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds.
Biomaterials. 2009 Oct;30(28):5170-7. doi: 10.1016/j.biomaterials.2009.05.072. Epub 2009 Jun 23.
10
Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran.
Biomaterials. 2008 Oct;29(29):3905-13. doi: 10.1016/j.biomaterials.2008.06.025. Epub 2008 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验