Suppr超能文献

用于治疗骨缺损的(生物)制造解决方案:侧重于美国食品药品监督管理局监管科学视角

(Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective.

作者信息

Ghelich Pejman, Kazemzadeh-Narbat Mehdi, Najafabadi Alireza Hassani, Samandari Mohamadmahdi, Memic Adnan, Tamayol Ali

机构信息

Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA.

Musculoskeletal Clinical Regulatory Advisers (MCRA), Washington DC, US.

出版信息

Adv Nanobiomed Res. 2022 Apr;2(4). doi: 10.1002/anbr.202100073. Epub 2022 Jan 5.

Abstract

Bone defects, with second highest demand for surgeries around the globe, may lead to serious health issues and negatively influence patient lives. The advances in biomedical engineering and sciences have led to the development of several creative solutions for bone defect treatment. This review provides a brief summary of bone graft materials, an organized overview of top-down and bottom-up (bio)manufacturing approaches, plus a critical comparison between advantages and limitations of each method. We specifically discuss additive manufacturing techniques and their operation mechanisms in detail. Next, we review the hybrid methods and promising future directions for bone grafting, while giving a comprehensive US-FDA regulatory science perspective, biocompatibility concepts and assessments, and clinical considerations to translate a technology from a research laboratory to the market. The topics covered in this review could potentially fuel future research efforts in bone tissue engineering, and perhaps could also provide novel insights for other tissue engineering applications.

摘要

骨缺损是全球手术需求第二高的病症,可能导致严重的健康问题,并对患者生活产生负面影响。生物医学工程和科学的进步催生了多种用于骨缺损治疗的创新解决方案。本综述简要总结了骨移植材料,对自上而下和自下而上的(生物)制造方法进行了系统概述,并对每种方法的优缺点进行了批判性比较。我们详细讨论了增材制造技术及其作用机制。接下来,我们回顾了骨移植的混合方法和有前景的未来发展方向,同时从美国食品药品监督管理局(US-FDA)监管科学的全面视角、生物相容性概念与评估以及临床考量等方面,阐述了将一项技术从研究实验室转化到市场的过程。本综述涵盖的主题可能会推动未来骨组织工程的研究工作,或许还能为其他组织工程应用提供新的见解。

相似文献

1
(Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective.
Adv Nanobiomed Res. 2022 Apr;2(4). doi: 10.1002/anbr.202100073. Epub 2022 Jan 5.
2
Current state of fabrication technologies and materials for bone tissue engineering.
Acta Biomater. 2018 Oct 15;80:1-30. doi: 10.1016/j.actbio.2018.09.031. Epub 2018 Sep 22.
3
4
Biomedical applications of tissue engineering technology: regulatory issues.
Tissue Eng. 1995 Summer;1(2):203-10. doi: 10.1089/ten.1995.1.203.
5
Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects.
J Orthop Translat. 2022 Jun 16;34:73-84. doi: 10.1016/j.jot.2022.04.004. eCollection 2022 May.
6
4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions.
J Funct Biomater. 2023 Jun 29;14(7):347. doi: 10.3390/jfb14070347.
7
Additively manufactured MAX- and MXene-composite scaffolds for bone regeneration- recent advances and future perspectives.
Colloids Surf B Biointerfaces. 2023 May;225:113282. doi: 10.1016/j.colsurfb.2023.113282. Epub 2023 Mar 29.
9
Natural medicine delivery from biomedical devices to treat bone disorders: A review.
Acta Biomater. 2021 May;126:63-91. doi: 10.1016/j.actbio.2021.02.034. Epub 2021 Feb 28.
10
Three-dimensional (3D) printed scaffold and material selection for bone repair.
Acta Biomater. 2019 Jan 15;84:16-33. doi: 10.1016/j.actbio.2018.11.039. Epub 2018 Nov 24.

引用本文的文献

2
In Vivo Performance of a Novel Hyper-Crosslinked Carbohydrate Polymer Bone Graft Substitute for Spinal Fusion.
Bioengineering (Basel). 2025 Feb 27;12(3):243. doi: 10.3390/bioengineering12030243.
5
Additively manufactured porous scaffolds by design for treatment of bone defects.
Front Bioeng Biotechnol. 2024 Jan 19;11:1252636. doi: 10.3389/fbioe.2023.1252636. eCollection 2023.
6
Natural medicine delivery from 3D printed bone substitutes.
J Control Release. 2024 Jan;365:848-875. doi: 10.1016/j.jconrel.2023.09.025. Epub 2023 Dec 17.
7
Biomedical applications of engineered heparin-based materials.
Bioact Mater. 2023 Aug 10;31:87-118. doi: 10.1016/j.bioactmat.2023.08.002. eCollection 2024 Jan.
8
The Use of Collagen-Based Materials in Bone Tissue Engineering.
Int J Mol Sci. 2023 Feb 13;24(4):3744. doi: 10.3390/ijms24043744.
9
Approximating scaffold printability utilizing computational methods.
Biofabrication. 2023 Feb 28;15(2). doi: 10.1088/1758-5090/acbbf0.
10
Smart Orthopedic Biomaterials and Implants.
Curr Opin Biomed Eng. 2023 Mar;25. doi: 10.1016/j.cobme.2022.100439. Epub 2022 Dec 21.

本文引用的文献

1
Latest Progress in Electrospun Nanofibers for Wound Healing Applications.
ACS Appl Bio Mater. 2019 Mar 18;2(3):952-969. doi: 10.1021/acsabm.8b00637. Epub 2019 Feb 13.
2
Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications.
J Biomater Sci Polym Ed. 2021 Oct;32(15):1966-1982. doi: 10.1080/09205063.2021.1952382. Epub 2021 Jul 29.
3
Triggered micropore-forming bioprinting of porous viscoelastic hydrogels.
Mater Horiz. 2020 Sep 1;7(9):2336-2347. doi: 10.1039/d0mh00813c. Epub 2020 Jul 16.
4
Bioprinted Injectable Hierarchically Porous Gelatin Methacryloyl Hydrogel Constructs with Shape-Memory Properties.
Adv Funct Mater. 2020 Nov 11;30(46). doi: 10.1002/adfm.202003740. Epub 2020 Sep 6.
5
In situ printing of scaffolds for reconstruction of bone defects.
Acta Biomater. 2021 Jun;127:313-326. doi: 10.1016/j.actbio.2021.03.009. Epub 2021 Mar 8.
6
BMP-6 carrying metal organic framework-embedded in bioresorbable electrospun fibers for enhanced bone regeneration.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111738. doi: 10.1016/j.msec.2020.111738. Epub 2020 Dec 15.
8
Customizable Composite Fibers for Engineering Skeletal Muscle Models.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):1112-1123. doi: 10.1021/acsbiomaterials.9b00992. Epub 2020 Jan 9.
9
Inkjet Bioprinting of 3D Silk Fibroin Cellular Constructs Using Sacrificial Alginate.
ACS Biomater Sci Eng. 2017 Aug 14;3(8):1519-1526. doi: 10.1021/acsbiomaterials.6b00432. Epub 2016 Nov 21.
10
Recent advances in ice templating: from biomimetic composites to cell culture scaffolds and tissue engineering.
J Mater Chem B. 2021 Jan 28;9(4):889-907. doi: 10.1039/d0tb02506b. Epub 2020 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验