Suppr超能文献

生物因素对化石双壳类动物灭绝风险的直接和间接影响。

Direct and indirect effects of biological factors on extinction risk in fossil bivalves.

机构信息

Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13594-9. doi: 10.1073/pnas.1100572108. Epub 2011 Aug 1.

Abstract

Biological factors, such as abundance and body size, may contribute directly to extinction risk and indirectly through their influence on other biological characteristics, such as geographic range size. Paleontological data can be used to explicitly test many of these hypothesized relationships, and general patterns revealed through analysis of the fossil record can help refine predictive models of extinction risk developed for extant species. Here, I use structural equation modeling to tease apart the contributions of three canonical predictors of extinction--abundance, body size, and geographic range size--to the duration of bivalve species in the early Cenozoic marine fossil record of the eastern United States. I find that geographic range size has a strong direct effect on extinction risk and that an apparent direct effect of abundance can be explained entirely by its covariation with geographic range. The influence of geographic range on extinction risk is manifest across three ecologically disparate bivalve clades. Body size also has strong direct effects on extinction risk but operates in opposing directions in different clades, and thus, it seems to be decoupled from extinction risk in bivalves as a whole. Although abundance does not directly predict extinction risk, I reveal weak indirect effects of both abundance and body size through their positive influence on geographic range size. Multivariate models that account for the pervasive covariation between biological factors and extinction are necessary for assessing causality in evolutionary processes and making informed predictions in applied conservation efforts.

摘要

生物因素,如丰度和体型大小,可能直接导致物种灭绝风险,也可能通过其对其他生物特征的影响(如地理分布范围大小)间接导致物种灭绝风险。古生物学数据可用于明确检验这些假设关系,通过对化石记录的分析揭示的一般模式有助于完善为现存物种开发的灭绝风险预测模型。在这里,我使用结构方程模型来区分三个经典的灭绝预测指标——丰度、体型大小和地理分布范围大小——对美国东部早新生代海洋化石记录中双壳类物种持续时间的贡献。我发现地理分布范围大小对灭绝风险有很强的直接影响,而丰度的明显直接影响可以完全用其与地理分布范围的共变来解释。地理分布范围对灭绝风险的影响在三个生态差异显著的双壳类群中都很明显。体型大小也对灭绝风险有很强的直接影响,但在不同的类群中方向相反,因此,它似乎与整个双壳类动物的灭绝风险脱钩。尽管丰度不能直接预测灭绝风险,但我揭示了丰度和体型大小通过对地理分布范围大小的积极影响而产生的微弱间接影响。在评估进化过程中的因果关系和在应用保护工作中做出明智的预测时,需要考虑到生物因素和灭绝之间普遍存在的共变的多变量模型。

相似文献

1
Direct and indirect effects of biological factors on extinction risk in fossil bivalves.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13594-9. doi: 10.1073/pnas.1100572108. Epub 2011 Aug 1.
2
Phylogenetic conservatism of extinctions in marine bivalves.
Science. 2009 Aug 7;325(5941):733-7. doi: 10.1126/science.1173073.
3
Marine extinction risk shaped by trait-environment interactions over 500 million years.
Glob Chang Biol. 2015 Oct;21(10):3595-607. doi: 10.1111/gcb.12963. Epub 2015 Jul 18.
4
Speciation and extinction drive the appearance of directional range size evolution in phylogenies and the fossil record.
PLoS Biol. 2012;10(2):e1001260. doi: 10.1371/journal.pbio.1001260. Epub 2012 Feb 21.
5
Adding fossil occupancy trajectories to the assessment of modern extinction risk.
Biol Lett. 2016 Oct;12(10). doi: 10.1098/rsbl.2015.0813.
6
Long-term differences in extinction risk among the seven forms of rarity.
Proc Biol Sci. 2012 Dec 22;279(1749):4969-76. doi: 10.1098/rspb.2012.1902. Epub 2012 Oct 24.
7
Extinction risk in extant marine species integrating palaeontological and biodistributional data.
Proc Biol Sci. 2018 Sep 19;285(1887):20181698. doi: 10.1098/rspb.2018.1698.
8
Assessing the fidelity of the fossil record by using marine bivalves.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6599-604. doi: 10.1073/pnas.0601264103. Epub 2006 Apr 14.
9
Diversity, distribution and intrinsic extinction vulnerability of exploited marine bivalves.
Nat Commun. 2023 Aug 15;14(1):4639. doi: 10.1038/s41467-023-40053-y.
10
The fossil record of the sixth extinction.
Ecol Lett. 2016 May;19(5):546-53. doi: 10.1111/ele.12589. Epub 2016 Mar 2.

引用本文的文献

3
Body-size evolution in gastropods across the Plio-Pleistocene extinction in the western Atlantic.
PLoS One. 2024 Dec 13;19(12):e0313060. doi: 10.1371/journal.pone.0313060. eCollection 2024.
4
Age-dependent extinction and the neutral theory of biodiversity.
Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2307629121. doi: 10.1073/pnas.2307629121. Epub 2023 Dec 27.
5
Reduced strength and increased variability of extinction selectivity during mass extinctions.
R Soc Open Sci. 2023 Sep 27;10(9):230795. doi: 10.1098/rsos.230795. eCollection 2023 Sep.
6
The relationship between geographic range size and rates of species diversification.
Nat Commun. 2023 Sep 9;14(1):5559. doi: 10.1038/s41467-023-41225-6.
8
Abundance does not predict extinction risk in the fossil record of marine plankton.
Commun Biol. 2023 May 22;6(1):554. doi: 10.1038/s42003-023-04871-6.
9
Extinction risk controlled by interaction of long-term and short-term climate change.
Nat Ecol Evol. 2021 Mar;5(3):304-310. doi: 10.1038/s41559-020-01377-w. Epub 2021 Jan 18.
10
Selective extinction against redundant species buffers functional diversity.
Proc Biol Sci. 2020 Jul 29;287(1931):20201162. doi: 10.1098/rspb.2020.1162. Epub 2020 Jul 22.

本文引用的文献

2
Phylogenetic conservatism of extinctions in marine bivalves.
Science. 2009 Aug 7;325(5941):733-7. doi: 10.1126/science.1173073.
3
Multiple ecological pathways to extinction in mammals.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10702-5. doi: 10.1073/pnas.0901956106. Epub 2009 Jun 15.
4
Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics.
Ecol Lett. 2009 Jun;12(6):538-49. doi: 10.1111/j.1461-0248.2009.01307.x. Epub 2009 Apr 8.
5
Colloquium paper: extinction and the spatial dynamics of biodiversity.
Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1(Suppl 1):11528-35. doi: 10.1073/pnas.0801919105. Epub 2008 Aug 11.
6
Higher origination and extinction rates in larger mammals.
Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6097-102. doi: 10.1073/pnas.0709763105. Epub 2008 Apr 15.
7
Ecological correlates and conservation implications of overestimating species geographic ranges.
Conserv Biol. 2008 Feb;22(1):110-9. doi: 10.1111/j.1523-1739.2007.00847.x.
8
Scaling population density to body size in rocky intertidal communities.
Science. 1990 Nov 23;250(4984):1125-7. doi: 10.1126/science.250.4984.1125.
9
The effect of geographic range on extinction risk during background and mass extinction.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10506-11. doi: 10.1073/pnas.0701257104. Epub 2007 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验