Suppr超能文献

经过基因工程改造以代谢木糖的酿酒酵母需要糖异生和戊糖磷酸途径的氧化分支来进行有氧木糖同化。

Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.

机构信息

Bioenergy Research Unit, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA.

出版信息

Yeast. 2011 Sep;28(9):645-60. doi: 10.1002/yea.1893. Epub 2011 Aug 1.

Abstract

Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances, due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses both NADH and NADPH, is hypothesized to reduce the cofactor imbalance, allowing xylose fermentation in this yeast. However, unadapted S. cerevisiae strains expressing this XR grow poorly on xylose, suggesting that metabolism is still imbalanced, even under aerobic conditions. In this study, we investigated the possible reasons for this imbalance by deleting genes required for NADPH production and gluconeogenesis in S. cerevisiae. S. cerevisiae cells expressing the XR-XDH, but not a xylose isomerase, pathway required the oxidative branch of the pentose phosphate pathway (PPP) and gluconeogenic production of glucose-6-P for xylose assimilation. The requirement for generating glucose-6-P from xylose was also shown for Kluyveromyces lactis. When grown in xylose medium, both K. lactis and S. stipitis showed increases in enzyme activity required for producing glucose-6-P. Thus, natural xylose-assimilating yeast respond to xylose, in part, by upregulating enzymes required for recycling xylose back to glucose-6-P for the production of NADPH via the oxidative branch of the PPP. Finally, we show that induction of these enzymes correlated with increased tolerance to the NADPH-depleting compound diamide and the fermentation inhibitors furfural and hydroxymethyl furfural; S. cerevisiae was not able to increase enzyme activity for glucose-6-P production when grown in xylose medium and was more sensitive to these inhibitors in xylose medium compared to glucose.

摘要

利用酿酒酵母木糖还原酶(XR)和木糖醇脱氢酶(XDH)基因工程改造的酵母菌株似乎受到代谢失衡的限制,这是由于 XR 和 XDH 的辅因子特异性不同所致。酿酒酵母 XR 同时使用 NADH 和 NADPH,据推测可以减少辅因子失衡,从而使该酵母能够发酵木糖。然而,未经适应的表达这种 XR 的酿酒酵母菌株在木糖上生长不良,这表明即使在有氧条件下,代谢仍然失衡。在这项研究中,我们通过删除酿酒酵母中 NADPH 产生和糖异生所需的基因来研究这种失衡的可能原因。表达 XR-XDH 但不表达木糖异构酶途径的酿酒酵母细胞需要戊糖磷酸途径(PPP)的氧化分支和糖异生产生葡萄糖-6-P 才能同化木糖。从木糖生成葡萄糖-6-P 的要求也适用于乳酸克鲁维酵母。在木糖培养基中生长时,乳酸克鲁维酵母和酿酒酵母都增加了产生葡萄糖-6-P 所需的酶活性。因此,天然能利用木糖的酵母对木糖的反应部分是通过上调将木糖再循环回葡萄糖-6-P 以通过 PPP 的氧化分支产生 NADPH 所需的酶来实现的。最后,我们表明,这些酶的诱导与对 NADPH 耗竭化合物二酰胺以及发酵抑制剂糠醛和羟甲基糠醛的耐受性增加有关;与在葡萄糖培养基中相比,当在木糖培养基中生长时,酿酒酵母无法增加葡萄糖-6-P 产生所需的酶活性,并且对这些抑制剂在木糖培养基中的敏感性更高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验