Kass Robert E, Kelly Ryan C, Loh Wei-Liem
Carnegie Mellon University and National University of Singapore.
Ann Appl Stat. 2011 Jun 1;5(2B):1262-1292. doi: 10.1214/10-AOAS429.
Neural spike trains, which are sequences of very brief jumps in voltage across the cell membrane, were one of the motivating applications for the development of point process methodology. Early work required the assumption of stationarity, but contemporary experiments often use time-varying stimuli and produce time-varying neural responses. More recently, many statistical methods have been developed for nonstationary neural point process data. There has also been much interest in identifying synchrony, meaning events across two or more neurons that are nearly simultaneous at the time scale of the recordings. A natural statistical approach is to discretize time, using short time bins, and to introduce loglinear models for dependency among neurons, but previous use of loglinear modeling technology has assumed stationarity. We introduce a succinct yet powerful class of time-varying loglinear models by (a) allowing individual-neuron effects (main effects) to involve time-varying intensities; (b) also allowing the individual-neuron effects to involve autocovariation effects (history effects) due to past spiking, (c) assuming excess synchrony effects (interaction effects) do not depend on history, and (d) assuming all effects vary smoothly across time. Using data from primary visual cortex of an anesthetized monkey we give two examples in which the rate of synchronous spiking can not be explained by stimulus-related changes in individual-neuron effects. In one example, the excess synchrony disappears when slow-wave "up" states are taken into account as history effects, while in the second example it does not. Standard point process theory explicitly rules out synchronous events. To justify our use of continuous-time methodology we introduce a framework that incorporates synchronous events and provides continuous-time loglinear point process approximations to discrete-time loglinear models.
神经脉冲序列是细胞膜上电压的非常短暂的跳跃序列,是点过程方法发展的推动性应用之一。早期的工作需要平稳性假设,但当代实验经常使用时变刺激并产生时变神经反应。最近,已经为非平稳神经点过程数据开发了许多统计方法。识别同步性也引起了很多关注,同步性是指在记录的时间尺度上两个或更多神经元中几乎同时发生的事件。一种自然的统计方法是使用短时间间隔对时间进行离散化,并引入神经元之间依赖性的对数线性模型,但以前对数线性建模技术的使用都假设了平稳性。我们通过以下方式引入一类简洁而强大的时变对数线性模型:(a) 允许单个神经元效应(主效应)涉及随时间变化的强度;(b) 还允许单个神经元效应涉及由于过去的尖峰而产生的自协方差效应(历史效应);(c) 假设过量同步效应(交互效应)不依赖于历史;(d) 假设所有效应随时间平滑变化。使用来自麻醉猴子初级视觉皮层的数据,我们给出两个例子,其中同步尖峰的速率不能由单个神经元效应中与刺激相关的变化来解释。在一个例子中,当将慢波“上升”状态视为历史效应时,过量同步性消失,而在第二个例子中则不然。标准点过程理论明确排除同步事件。为了证明我们对连续时间方法的使用是合理的,我们引入了一个包含同步事件的框架,并为离散时间对数线性模型提供连续时间对数线性点过程近似。