Bloy Luke, Ingalhalikar Madhura, Verma Ragini
Department of Bioengineering, University of Pennsylvania.
Proc IEEE Int Symp Biomed Imaging. 2011:2061-2065. doi: 10.1109/ISBI.2011.5872818.
This work presents an automated method for partitioning neuronal white matter (WM) into regions of interest with uniform WM architecture. These regions can then be used to replace atlas-derived regions for any subsequent statistical analysis. The fiber orientation distribution function is used as a model of WM architecture resulting in a voxel similarity function sensitive to both fiber orientations and configurations. The method utilizes the normalized cuts algorithm to partition WM voxels based on this similarity function along with a connected component labeling algorithm to ensure spatial compactness. We illustrate the algorithms ability to discern regions based on both orientation and complexity through its application to a simulated fiber crossing and an in-vivo dataset.
这项工作提出了一种自动方法,用于将神经元白质(WM)划分为具有统一WM结构的感兴趣区域。然后,这些区域可用于替代图谱衍生区域,以进行任何后续的统计分析。纤维取向分布函数被用作WM结构的模型,从而产生一个对纤维取向和配置都敏感的体素相似性函数。该方法利用归一化切割算法基于此相似性函数对WM体素进行划分,并结合连通分量标记算法以确保空间紧凑性。我们通过将算法应用于模拟纤维交叉和体内数据集,展示了其基于取向和复杂性辨别区域的能力。